• 제목/요약/키워드: Preheating treatment

검색결과 43건 처리시간 0.021초

Polymerase chain reaction에 의한 동물 유래 피부사상균 DNA의 검출 (Detection of DNA from Dermatophytes by Polymerase Chain Reaction)

  • 김영욱;여상건;최원필
    • 대한수의학회지
    • /
    • 제42권3호
    • /
    • pp.363-370
    • /
    • 2002
  • For the development of diagnostic polymerase chain reaction (PCR) to fungal infection by dermatophytes Trichophyton and Microsporum, detection of the fungal DNA by PCR and analysis of the DNA pattern were undertaken in the present study. A total of 15 strains were tested and those consisted of 3 reference strains and 12 isolates such as: reference strains of T mentagrophytes (downy type, ATCC 9533), T rubrum (IFO 6204) and M gypseum (ATCC 9083), and each isolate of T mentogrophytes (powdery type), T mentagrophytes (granular type), T mentogrophytes (purple-red type), T rubrum, T raubitschekii, T tonsurans, T equinum, T ajelloi, T verrucosum, M cookei, M nanum and M gypseum. The DNA were purely isolated from all strains of Trichophyton spp. and Microsporum spp. by a simple method partly consisted of disruption of fungal cells by lyophilization and grinding and extraction of fungal DNA without phenol treatment which is a routine procedure in DNA isolation. For the detection of fungal DNAs, optimal condition of PCR was determined as preheating once at $94^{\circ}C$ for 5 min, 35 cycles of denaturation at $94^{\circ}C$ for 1 min, annealing at $38^{\circ}C$ for 1 min and polymerization at $72^{\circ}C$ for 2 min, and 1 cycle of final extension at $72^{\circ}C$ for 5 min. In PCR using arbitrary primers AP-1 (5' ACCCGACCTG3') and AP-2 (5' ACGGGCCAGT3'), DNAs in various numbers and sizes were detected from different species of Trichophyton and Microsporum, while DNAs in similar size were also detected in all strains of Trichophyton spp. and Microsporum spp. There were unique DNAs observed from certain dermatophytes by AP-1 such as 1,900 bases in T rubrum, 950 and 1,100 bases in T raubitscheldi, 2,100 bases in T equinum, 400 bases in T verrucosum and 1,150 bases in M gypseum. The unique DNAs were also observed by AP-2 such as 1,200 bases in T ajelloi, 250 bases in T verrucosum, 1,150 bases in M cookei and 2,000 bases in M nanum. The results indicated that PCR can detect a specific DNA from certain Trychophyton and Microsporum spp, which can be the information for further development of diagoomc PCR to dennatophytes.

온도 측정을 통한 상용 쑥뜸의 자극효과에 대한 실험적 연구 -연소시간 및 연소온도를 중심으로- (Experimental Study on the Stimulating Effect of Commercial Moxa Combustion through the Measurement of Temperature -Focused on Combustion time and temperature-)

  • 이건목;양유선;이건휘
    • Journal of Acupuncture Research
    • /
    • 제19권2호
    • /
    • pp.114-127
    • /
    • 2002
  • Objective : The purpose of this study is to investigate the mechanism and effect of moxibustion objectively and to be used as the quantitative data for developing the new thermal stimulating treatment by observing the combustion time and temperature of commercial moxaes. Methods : We have selected two types(large-size moxa A(LMA), large-size moxa B (LMB)) among large moxaes used widely in the clinic. We examined combustion times, temperatures in each period during a combustion of moxa. Results : 1. The combustion time in the preheating period was about 30sec in both moxaes on the non-contact heated surface. 2. The combustion time in the heating period was about 345sec in LMA and about 1391 sec in LMB, about 4 times longer in LMB on the non-contact surface. 3. The maximum temperature in the heating period was $44.5^{\circ}C$ in LMA and $45.4^{\circ}C$ in LMB respectively, higher by $0.9^{\circ}C$ in LMB. The average temperature in the heating period was $35.5{\sim}37.6^{\circ}C$ in LMA and $36.0{\sim}39.8^{\circ}C$ in LMB, a little higher in LMB. 4. The combustion time in the retaining period in LMA was 45.4sec and 13% of that in the heating period, and in LMB 594.7sec and 43% of that in the heating period on the non-contact surface. 5. On the point(PH) measured maximum temperature, the average temperature during the retaining period was $44.0^{\circ}C$, $42.9^{\circ}C$ respectively and the temperature at an end of the retaining period was $43.0^{\circ}C$, $40.2^{\circ}C$ respectively. 6. The time at a beginning of the cooling period was about 418 sec from ignition in LMA and 2021sec in LMB, and the temperature at that time was $36.9{\sim}39.1^{\circ}C$ on the non-contact surface. Conclusion : It was thought that not only the figure of moxicombustion device, but also the form and size of moxa had influence on the combustion characteristics deciding the performance of stimulus seriously.

  • PDF

상용 소형 쑥뜸의 열역학적 특성에 대한 실험적 연구 (Experimental Study on the Thermodynamic Characteristics of Commercial Small-size Moxa Combustion)

  • 이건목;황유진;이건휘
    • Journal of Acupuncture Research
    • /
    • 제18권6호
    • /
    • pp.171-187
    • /
    • 2001
  • Objective : Moxibustion has been proved efficacious for many diseases, but isn't widespread in the clinics due to a danger of skin burning, the smoke produced while burning a moxa combustion and so on. Therefore, another type of moxa that can be resolved these troubles is required. To improve the effect of moxibustion and develop the new thermal stimulating treatment, the performance of commercial moxibustion widely used are studied systematically and found out quantitatively. Methods : We have selected two types (small-size moxa A(sMA), small-size moxa B (sMB)) among small-size moxaes used widely in the clinic. We examined combustion time, various temperatures, temperature gradient in each period during a combustion of moxa. Results : 1. The combustion time in the preheating period appeared somewhat longer in sMA than in sMB. 2, The combustion time in the heating period appeared longer in sMA by 26% than in sMB. 3. The average temperature in the heating period was $37.6{\sim}37.8^{\circ}C\;in\;sMA\;and\;36.2{\sim}36.8^{\circ}C$ in sMB and the maximum temperature measured at a center of contact surface in sMA was $48.6^{\circ}C$, higher by over $2.8^{\circ}C$ than that of sMB moxibustion. 4. The average ascending temperature gradient in the heating period was $0.08{\sim}0.1^{\circ}C/sec$ in both moxaes, and the average ascending temperature gradient of heating period in sMB appeared larger. The maximum ascending temperature gradient appeared higher in sMB, and the time reaching maximum ascending temperature gradient appeared much earlier in sMA than in sMB. 5. The combustion time in the retaining period was around 100 sec in sMA and around 275 sec in sMB. 6. The average temperature in the retaining period was $42.2{\sim}46.0^{\circ}C\;in\;sMA\;and\;39.3{\sim}41.4^{\circ}C/sec$ in sMB. The minimum temperature in the retaining period was over $38.80^{\circ}C$ in sMA but just $34.7^{\circ}C$ in sMB. 7. The average descending temperature gradient in sMA was $-0.050{\sim}0.067^{\circ}C/sec$ and in sMB was $-0.030{\sim}0.037^{\circ}C/sec$ 8. The combustion time in the cooling period appeared longer over two times in sMA than in sMB, and the time which the cooling period (minimum temperature) finished at appeared later in sMB by 55 sec. 9. We classified the combustion process that the measured temperature rose over body heat($37^{\circ}C$) into the effective combustion period. The effective combustion time was 233.3 sec in sMA and 300.4 sec in sMB respectively, and was longer by about 29% in sMB. The average temperature and maximum temperature in the effective combustion time appeared higher in sMA. The time taken until the maximum temperature was reached was 225.1 sec in sMA and 244.5 sec in sMB, faster by about 20 sec in sMA. The maximum ascending temperature gradient during the effective combustion period appeared larger about 1.4 times in sMB, but the time when the maximum ascending temperature gradient happened was faster in sMA. Conclusion : It appears that sMB, compared with sMA, is proper if necessary to apply the long time and weak stimulus, because of the gentle stimulus during the relatively longer time. In contrast, sMA that the symmetrical combustion happened is proper if necessary to apply the short time and strong stimulus.

  • PDF