• 제목/요약/키워드: Preheating Temperature

검색결과 222건 처리시간 0.022초

Effects of Genetic Variants of ${\kappa}$-casein and ${\beta}$-lactoglobulin and Heat Treatment of Milk on Cheese and Whey Compositions

  • Choi, J.W.;Ng-Kwai-Hang, K.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권5호
    • /
    • pp.732-739
    • /
    • 2002
  • Milk samples with different phenotype combination of $\{kappa}$-casein and ${\beta}$-lactoglobulin and different preheating temperatures of 30, 70, 75 and $80^{\circ}C$ were used for cheesemaking under laboratory conditions. For the 853 batches of cheese, mean composition was 59.64% total solids, 30.24% fat and 23.66% protein, and the whey contained 6.93% total solids, 0.30% fat and 0.87% protein. Least squares analysis of the data indicated that heating temperature of the milk and ${\kappa}$-CN/${\beta}$-LG phenotypes had significant effects on cheese and whey compositions. The total solids, fat and protein contents of cheese were negatively correlated with preheating temperatures of milk. Cheese from BB/BB phenotype milk had the highest and those from AA/AA phenotype milk had the lowest concentrations of total solids, fat and protein. Mean recoveries of milk components in the cheese were 53.71% of total solids, 87.15% of fat, and 80.32% of protein. For the 10 different types of milk, maximum recoveries of milk components in cheese occurred with preheating temperature of $70^{\circ}C$ or $75^{\circ}C$ and lowest recoveries occurred at $80^{\circ}C$. The whey averaged 6.94% total solids, 0.30% fat and 0.87% protein. Losses of milk components in the whey were lowest for milk preheated at $80^{\circ}C$ and for milk containing the BB/BB phenotype.

SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향 (The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process)

  • 윤기석;양범석;이종현;원창환
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.

난방기 중 이중외피 시스템의 자연환기 성능분석에 관한 실험적 연구 (Experimental Study on Natural Ventilation Performance of Double Facade System in Heating Period)

  • 이건호;김현수;고영우;손영주
    • KIEAE Journal
    • /
    • 제6권2호
    • /
    • pp.43-50
    • /
    • 2006
  • A Double Facade System(DFS) is well known as an innovative solution of ecological facade in the west european countries. There are more than 200 various realized DFS in Germany. At the same time, the korean engineers have researched to find out the physical advantages of DFS in the moderate korean climate, which has a very humid summer with high temperature and a dry winter with low temperature. For example, the monthly mean temperature in Korea comes up to 28K, while that in Germany comes up to only 19K. That is, why a other solution of DFS is needed in Korea. This study has experimented the physical performance of the natural ventilation in the heating period. The preheating function of the cold air by DFS can improve no doubt the performance of the natural ventilation at the cold season as well as spring and autumn. The physical difference between single and double facade on natural ventilation has been tested at the newly constructed laboratory, which can turn $360^{\circ}$ to confirm the characteristic of a facade with the various directions. The results show the natural ventilation of the DFS has definitely much more comfortable than that of the single facade system. The air velocity of the inflow as well as the air temperature in the DFS provide a more stable condition than in the SFS. The theoretical limit(air velocity max 0.2m/s, air temperature min. $18^{\circ}C$, temperature difference between 100mm and 1700mm height max. 3K) on the indoor comfortableness doesn't go over in the DFS. On the other hand, the SFS showed an unstable condition with an excess of comfortableness limit on air velocity as well as temperature. In view of the researching results so far achieved, the research came to a conclusion, that the DFS can provide a more comfortable indoor condition by the preheating in the heating period than a SFS, and the period of natural ventilation in winter time could be definitely increased at the DFS.

2단 튜브형 가열로 반응기에 의한 초미세 SiO2 입자의 제조 및 증착 연구 (A Study on Ultrafine SiO2 Particles Generation and Deposition by 2-Stage Tube Furnace Reactor)

  • 유수종;김교선
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.233-239
    • /
    • 1997
  • The effects of preheating the gas stream on deposition characteristics of ultrafine $SiO_2$ particles were investigated theoretically. The model equations such as mass and energy balance equations and aerosol dynamic equations were solved to predict the particle growth and deposition. The gas temperatures, $SiCl_4$ concentrations, $SiO_2$ particle volumes, $SiO_2$ particle sizes and deposition efficiencies of $SiO_2$ particles were calculated for various preheating temperatures. As the preheater setting temperature increases, the $SiO_2$ particle size distribution becomes more uniform, because the effect of $SiCl_4$ diffusion decreases.

  • PDF

공기 지중간 직접열교환시스템의 열성능 해석 (Analysis of the thermal performances of air-earth direct heat exchanger)

  • 김원갑;안정수;최영돈
    • 설비공학논문집
    • /
    • 제9권2호
    • /
    • pp.112-121
    • /
    • 1997
  • This study is focused on the development and selection of optimal cool tube system to maximize its thermal performance. Cool tube is devised to reduce the heating and cooling load of building by preheating or refreshing of intake air. Finite volume method was adopted to solve the conduction problem between the cool tube and earth. We examine the cool tube system for two operating periods, a short term(12 hours) and a long term(3 months). The results of short term operations reveal that condensation significantly influences and raises the exit air temperature. For long term operations, optimum conditions of cool tube system are obtained with variations of flow-rate, depth, length and diameter of cool tube.

  • PDF

방카 C 중유의 점도에 관한 실험 (On the viscosity of Bunker C fuel oil)

  • 나윤호
    • 기술사
    • /
    • 제4권15호
    • /
    • pp.11-15
    • /
    • 1971
  • Bunker C fuel oil may be taken as a conc. solution of asphalt as a solute. It may be assumpt that there will be unalogical relationship between cone. solution and solute in regological behavior. Investigation was carried out to fiud out the -opitimum preheating temperature. The following results were obtained: the colloidal structure bunker C fuel oil undergoes a transition at around the softening point of the solute asphalt: and the flow charactor changes from non-Newtonian flow to Newtonian as well as its activation energy is memarkably reduced at around softening point of the solute asphalt for the purpose of the improvement of flow charater of Bunker C fuel oil, the preheating must be done above the softening point of a solute asphalt.

  • PDF

Al-Fe 이종재료 접합 계면에서의 크랙 거동 (Behaviors of the interface cracks during an Al-Fe dissimilar joining)

  • 강남현;김철희;김준기;이창우
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.59-61
    • /
    • 2006
  • The $CO_2$ laser cladding was conducted on an AC2B alloy with feeding Fe-based powders. A powder feeding rate (PFR) and a travel velocity were related with the cracks adjacent to the Fe/Al interface. Preheating temperature was varied to study the interface crack. Preheating to $250^{\circ}C$ during the laser cladding suppressed the interface crack ratio (ICR). The ICR was limited for the single pass clad and the reciprocating test for the slide wear was conducted on an overlay cladding experiment. Comparing with no overlap overlay, the overlay clad with 50% overlap showed better wear resistance.

  • PDF

순차식 촉매연소 시스템 (Sequential Catalytic Combustion System)

  • 유상필;정남조;이승재;류인수;강성규;송광섭
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2004년도 춘계 학술발표회 논문집
    • /
    • pp.197-200
    • /
    • 2004
  • Compared to conventional flame combustion, catalytic combustion had the advantage of oxidation of V.O.C. gas which was high voluminous, low caloric mixture flow. However, the temperature of mixture gas should be over the one of catalytic reaction start and the control of reaction on the catalytic surface tends to be vulnerable. To overcome these obstacles, composition of both catalytic combustor and heat exchanger was devised and named the sequential catalytic combustion system. In this system, only trigger unit needed preheating process for transient starting time. Once trigger unit was ignited, the next unit w3s supplied heat to ignite from that and same process was performed to the last one sequentially. When it come to steady state, whole mixture gas was oxidated at each unit simultaneously and preheating for trigger unit was not needed any more. System of 100 kcalh/hr capacity was devised and operated successfully.

  • PDF