• Title/Summary/Keyword: Preheated combustion air

Search Result 34, Processing Time 0.018 seconds

Derivation of Design Parameter for Heat Regenerator with Spherical Particles (구형축열체를 이용한 축열기의 설계인자도출)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1412-1419
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, was numerically analyzed to evaluate the heat transfer and pressure losses and to derive the design parameter for heat regenerator. It is confirmed that the computational results, such as air preheat temperature, exhausted gases outlet temperature, and pressure losses, agreed well with the experimental data. The thermal flow in heat regenerator varies with porosity, configuration of regenerator and diameter of regenerative particle. As the gas velocity increases with decreasing the cross-sectional area of the regenerator, the heat transfer between gas and particle enhances and pressure losses decrease. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled lower with the increase of pressure losses. Assuming a given exhaust gases temperature at the regenerator outlet, the regenerator need to be linearly lengthened with inlet Reynolds number of exhaust gases, which is defined as a regenerator design parameter.

A Numerical Study on the Efficiency of an Industrial Furnace for Oxygen Combustion Conditions (산소부화용 공업로의 운전조건이 열효율에 미치는 영향)

  • Kim, Kang-Min;Lee, Yeon-Kyung;Ahn, Seok-Gi;Kim, Gyu-Bo;Yoo, In;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.82-88
    • /
    • 2015
  • After a reheating furnace installation, the modification of the size and the heat capacity is very difficult. Therefore, the development of design package tool is required for the computation on the correct specifications before the design and the installation. Prior to development of the design tool, a module that calculates the amount of heat loss of each part according to the specifications for determining the thermal efficiency of a continuous heating furnace was developed and applied to the oxy-fuel industrial furnace. Through this, the effects of fuel type, oxygen fraction and recirculation on the efficiency of the furnace of which the output is 110Ton/hour were analyzed. In oxy-fuel combustion condition, the efficiency was 15% higher than air combustion conditions. With the using COG(Coke Oven Gas) instead of LNG, the efficiency was slightly increased. In the air combustion condition, the efficiency was increased about 33% with the preheated air. But, in oxy-fuel condition, the amount of exhaust gas was reduced, so the efficiency was increased about 7%.

A study on the application of recuperative burner system to a teeming ladle (티밍래들에 폐열회수버너의 적용)

  • 양제복;정대헌;김원배
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.10a
    • /
    • pp.180-192
    • /
    • 1998
  • One of the conventional gas burners has nowadays been used for ladle preheating. As a ladle is one of the open-type furnaces, however, it causes to consume much fuel because of high temperature of exhaust gas from the ladle and the exhaust gas passing through ladle cover makes it worsen a working environment nearby. Therefore, the objective of this study is to develop the recuperative burner system applying for an existing teeming ladle , which is integrated with burner, recuperator and eductor as one of the new type combustion equipments and has many advantages of simple installation, compactness and easy control, especially a great deal of energy saving through the waste heat recovery from exhaust gas. The contents of the study is to design, manufacture of recuperative burner system and to perform its tests experimentally after applying to the teeming ladle in the capacity of 100 ton. Its heat release rate is 1,700,000 kcal/h with COG(Cokes Oven Gas) as fuel gas. The test items are the temperature distribution inside the ladle and the preheated air temperature change depending upon the exhaust gas. Nox, exhaust gas analysis and noise.

  • PDF

Performance Prediction of Heat Regenerators with using Spheres: Relation between Heat Transfer and Pressure Drop (구형 축열체를 사용한 축열기의 성능예측: 압력손실과 열전달의 관계)

  • 조한창;조길원;이용국
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of heat of exhaust gaset. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of heat regenerator with spherical particles, was numerically simulated to evaluate the heat transfer and pressure drop and thereby to suggest the parameter for designing heat regenerator. It takes about 7 hours for the steady state of the flow field in regenerator, in which heat absorption of regenerative particle is concurrent with the same magnitude of heat desorption. The regenerative particle experiences small temperature fluctuation below 10 K during the reversing process. The performance of thermal flow in heat regenerator varies with inlet velocity of exhaust gas and air, configuration of regenerator (cross-sectional area and length) and diameter of regenerative particle. As the gas velocity increases, the heat transfer between gas and particle enhances and with the increase the pressure losses. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled more with the increase of pressure losses.