• Title/Summary/Keyword: Preheat Zone

Search Result 13, Processing Time 0.021 seconds

열 cycle 재현법을 이용한 원자로압력용기(RPV)강 용접열영향부(HAZ) 해석

  • 김주학;문종걸;변택상;이창희;홍준화
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.17-22
    • /
    • 1997
  • ASME SA508 Class 3 원자로압력용기강을 대상으로, 용접열영향부(heat affected zone, HAZ)의 최고온도(peak temperature) 등온분포도(isothermal diagram)를 작성 및 해석하였고, 재현(simulated) 열영향부 시험편을 제작하여 미세조직검사 및 기계적특성 시험을 실시하였다. 그 결과, 최고온도 등온분포도를 이용하여, 미소열영향부(subzone of HAZ)의 미세조직(microstructure)에 미치는 예열(preheat)온도와 용접입열량(weld heat input)의 크기 효과를 예측할 수 있었다. 또한, 재현 HAZ 의 기계적특성 시험결과, 용접용융선(fusion line) + 1 mm 이내의 위치로 대표되는 열 cycle 조건에서는 모재보다 양호한 강도와 인성을 보였고, 용접용융선 + 2~3mm부근에서 가장 미세한 조직(fine tempered lower bainite)과 우수한 충격인성을 나타냈다. 한편, 용접용융선 + 약 5mm 위치에서의 열 cycle 을 재현한 시험편에서는 미세조직의 변화(spheroidization of carbides)와 함께 인성 및 기계적 특성이 저하하여 모재보다 낮은 값을 보이는 것을 발견할 수 있었다.

  • PDF

A study on the influence of turbulence characteristics on burning speed in swirl flow field (스월유동장에 있어서 연소속도에 미치는 난류특성의 영향에 관한 연구)

  • Lee, Sang Jun;Lee, Jong-Tai;Lee, Song-Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.244-254
    • /
    • 1996
  • Flow velocity was measured by, use of hot wire anemometer. Turbulence intensity was in proportion to mean flow velocity regardless of swirl velocity. And integral length scale has proportional relation with swirl velocity regardless of measurement position. Turbulent burning speed during flame propagation which was determined by flame photograph and gas pressure of combustion chamber was increased with the lapse of time from spark and was decreased a little at later combustion period. Because of combustion promotion effect, turbulent burning speed was increased according to increase of turbulence intensity. Burning speed ratio i.e. ratio of turbulent burning speed ($S_BT$) to laminar burning speed ($S_BL$) was found out by use of turbulence intensity u' and integral length scale $l_x$ , $\delta_L$ is width of preheat zone in laminar flame.

The Experimental Studies of Vacuum Residue Combustion in a Small Scale Reactor (소규모 반응로를 이용한 감압 잔사유지 연소실험)

  • Park Ho Young;Kim Young Ju;Kim Tae Hyung;Seo Sang Il
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.268-276
    • /
    • 2005
  • Vacuum Residue (VR) combustion tests were carried out with a 20 kg/hr (fuel feed rate) small scale reactor. The nozzle used was a steam atomized, internal mixing type. Compared to heavy oil, vacuum residue used in this work is extremely high viscous and contains high percentages of sulfur, carbon residue and heavy metals. To ignite atomized VR particles, it was necessary to preheat the reactor, and it has been done with LP gas. The axial and radial gas temperature, major species concentrations and solid sample were analyzed when varying the fuel feed rate. The main reaction zone of atomized VR-air flame in a reactor was anticipated within about 1 m from the burner tip by considering the profiles oi gas temperature, species concentration and particle size measured along with the reactor. At downstream, the thermally, fully developed temperature distribution was obtained. SEM photographs revealed that VR carbon particles collected from the reactor are porous and have many blow-holes on the particle surface.