• 제목/요약/키워드: Preheat/interpass temperature

검색결과 4건 처리시간 0.021초

다층용접한 저합금 용접금속의 강도와 인성에 미치는 입열량 및 예열/패스간 온도의 영향 (Effects of Heat Input and Preheat/interpass Temperature on Strength and Impact Toughness of Multipass Welded Low Alloy Steel Weld Metal)

  • 방국수;정호신;박찬
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.481-487
    • /
    • 2015
  • The effects of the heat input and preheat/interpass temperatures on the tensile strength and impact toughness of multipass welded weld metal were investigated and interpreted in terms of the recovery of the alloying elements and microstructure. Increases in both the heat input and preheat/interpass temperatures decreased the tensile strength of the weld metal. A lower recovery of alloying elements, especially Mn and Si, and smaller area fraction of acicular ferrite in the weld metal were observed in higher heat input welding, resulting in a lower tensile strength. In contrast, only a microstructure difference was observed at a higher preheat/interpass temperature. The impact toughness of the weld metal gradually increased with an increase in the heat input because of the lower tensile strength. However, it decreased again when the heat input was larger than 45 kJ/cm because of the much smaller area fraction of acicular ferrite. No effect of the preheat/interpass temperature on the impact toughness was observed. The formation of a weld metal heat-affect zone showed little effect on the impact toughness of the weld metal in this experiment.

FCAW 50t 후판용접에 있어 예열 및 층간온도 변화에 따른 횡크랙 발생과 피로특성에 관한 연구 (A Study on Transverse Cracking and Fatigue Properties of 50mm Thick FACW Weld Metal ; Effects of Preheating and Interpass Temperature)

  • 이해우;강성원
    • Journal of Welding and Joining
    • /
    • 제15권3호
    • /
    • pp.56-64
    • /
    • 1997
  • Macrostructural characteristic of the transverse cracks and fatigue behavior were studied for EH 32 TMCP 50mm thick plate welded with FACW under the variation in preheat and interpass temperatures. Transverse cracks were detected in specimen welded with preheat and interpass temperature below $30^{\circ}C$, but cracks were not detected in the specimens welded with preheat and interpass temperatures at the range of $100~120^{\circ}C$.C. The location of crack formation was found to strongly depend upon the thickness of weld layers as regard to the plate thickness.

  • PDF

라멜라 테어 발생감수성에 미치는 비금속개재물의 영향 (Effect of non-metallic inclusion on susceptibility to lamellar tearing)

  • 방국수;이종봉
    • Journal of Welding and Joining
    • /
    • 제3권1호
    • /
    • pp.3-10
    • /
    • 1985
  • Lamellar tearing susceptibility and through-thickness tensile ductility have been investigated in $40kg/mm^2 and 50kg/mm^2$ class tensile strength steel plates in terms of cleanliness of non-metallic inclusion and welding condition. The plate which had 0.01% cleanliness of A-type inclusion (MnS) had 61% of the reduction of area in the through-thickness direction and did not show lamellar tearing. Lamellar tearing susceptibility decreased with increasing the preheat and interpass temperature. The plate which had 0.04% cleanliness of A-type inclusion did not show lamellar tearing under the condition of 75.deg. C of preheat and interpass temperature.

  • PDF

시편 예열 온도가 FCW 용착금속의 확산성 수소량에 미치는 영향 (Effect of Preheat Temperature on Diffusible Hydrogen Content in Weld Metal Deposited using Flux Cored Wire)

  • 김동윤;황인성;김동철;강문진
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.18-21
    • /
    • 2014
  • Cold cracking of weldment is one of the most serious welding problems. A sufficient quantity of diffusible hydrogen, a residual stress, and a sensitive microstructure are the causes of cold cracking. Removal of any one of these factors can be used to prevent cold cracking. Application of flux cored arc welding process is increasing due to high productivity and easiness of welding. In addition, to prevent cold cracking in the HAZ or weldment, preheat temperature and interpass temperature have to be controlled. In this study, the effect of preheat temperature on the levels of diffusible hydrogen in the weld metal deposited using flux cored wire was examined. The levels of preheat temperature of base metal specimen were ambient temperature, 50, 100 and $150^{\circ}C$ respectively. The result showed that the increase of preheat temperature was a linear relationship with reduction of diffusible hydrogen content in weldment.