• Title/Summary/Keyword: Prefounded Column

Search Result 8, Processing Time 0.017 seconds

Measurement and Analysis of Prefounded Column Straightness in Top Down Construction (Top Down 선기둥의 계측과 자료 분석)

  • Shin Cheon-Kyun;Rhim Hong-Chul;Kim Seung-Weon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.173-176
    • /
    • 2006
  • The purpose of this study is to investigate the cause of an error of prefounded column straightness and to measure the error during Top-Down construction. There are several causes of an error of prefounded column : (1) The columns are connected by welding or other methods. (2) concrete and aggregates are put in columns. (3) The columns are constructed during the construction. The error of column straightness is different for each column, and the tilting of columns is shown in one or two directions between floors. The additional loads caused by the error of straightness may give damage to buildings.

  • PDF

Measurement of Prefounded Column Erection During Top Down Construction (Top Down 공사의 선기둥 수직도 계측)

  • Rhim, Hong-Chul;Shin, Cheon-Kyun;Kim, Seung-Weon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.4 s.22
    • /
    • pp.77-83
    • /
    • 2006
  • The purpose of this study is to measure the straightness of prefounded columns during underground construction stages. There are several causes of an error of prefounded column: (1) columns connected by welding or bolting, (2) by placement of concrete and aggregates around columns, (3) movement during construction, and (4) load applied during construction. The error of column straightness is different for each column, and the tilting of columns is shown in one or two directions between floors. The additional loads caused by the error of straightness may give damage to buildings. This paper presents the measurement results of column straightness, and thus providing a basis for further analysis.

Development of Top-Down Connection System to Solve the Problem of Construction Tolerances in Installing Prefabricated Beams to Pre-founded Columns (시공오차가 있는 선기초기둥에 공장제작보의 설치가 용이한 탑다운공사용 접합기술개발)

  • Kim, Seung-Weon;Jung, Hee-Weon;Park, Dae-Yung;Kim, Dong-Gun;Park, Joo-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.25-30
    • /
    • 2011
  • Almost prefounded columns for top-down construction certainly have construction tolerances in plan and plumbness. Therefore, it is very difficult to connect prefabricated beams to prefounded columns at each floor level after excavation by usual top-down connection method and this usual connection method leads to long construction time, increasing cost and decreasing quality. This paper presents a new method for connecting prefabricated beam to prefounded column with GROUT-JACKET CONNECTION SYSTEM consisting of sleeve, bearing-shear bands and grout. Details and illustrations of the connections and applications by GROUT-JACKET CONNECTION SYSTEM for the top-down construction are also included in this paper.

  • PDF

Load Carrying Capacity of Top Down Prefounded Columns on Different Excavation Schedule (굴착순서에 따른 Top Down 선기둥 지지력 산정)

  • Rhim, Hong-Chul;Hwang, Hee-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.4 s.22
    • /
    • pp.45-52
    • /
    • 2006
  • Top Down method is more widely used in downtown construction, recently. As underground construction constitutes a significant portion of the total construction cost and time in Top Down construction, it is important to develop a construction method to reduce the time required in underground works. The purpose of this study is to analyze load carrying capacity of Top Down prefounded columns on different excavation schedule. When several floors are excavated, the valid buckling length of prefounded column is increased and allowable buckling stress is decreased. The result shows that all columns are safe in buckling down to B3 story whether 2 or 3 stories are excavated. However, several columns are not safe from B4 story when 2 or 3 stories are excavated straightly. With these results, a process can be designed that the first three stories in the basement are excavated, and then excavate B4 story after placing concrete on B1 and B2 floor.

Development of Connection between CFT Prefounded Column and Slab (CFT 선기초기둥과 슬래브 접합부 개발)

  • Song, Jee-Yun;Rhim, Hong-Chul;Kim, Seung-Weon;Kim, Dong-Gun;Kang, Seung-Ryong;Jeong, Mee-Ra
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.129-133
    • /
    • 2008
  • For the construction of Top-Down structures, it is crucial to have a solid connection between prefounded columns and slabs. This paper presents a new construction method for the connection when using a circular Concrete Filled Tube (CFT) as a prefounded column as an alternative to currently using wide flange type columns. The development of shear studded jackets along with a shear band suitable for the circular shape of the column has been made. The details and mechanism of the connection is explained together with the results of experiments which verified the structural integrity of the connection.

  • PDF

Development of Connection between CFT Column and Pier Foundation for Top-Down Construction (Top-Down 공사용 원형충전강관기둥과 피어기초의 개발)

  • Jeong, Mee-Ra;Rhim, Hong-Chul;Kim, Seung-Weon;Kim, Dong-Gun;Kang, Seung-Ryong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.29-32
    • /
    • 2009
  • Building foundations for Top-Down construction require a special setting, because the foundations have to be placed way before excavation for the substructure of main building, Usually, the foundation goes into the layer of rock and it is often called rock-pier foundation, Currently, a cage of steel reinforcing bars is inserted to the pre-excavated hole in the rock layer, hanging down from the wide flange steel column above. This paper presents a new method for connecting the prefounded column and the steel cage with a coupler for better connection between the two, The use of a circular Concrete Filled Tube (CFT) as a prefounded column makes it possible to have this type of connection. The details of the connection and application to a Top-Down construction site is also included in this paper.

  • PDF

Study on Load Carrying Capacity of Top Down Prefounded Columns (Top Down 선기둥의 지지력 산정방법에 관한 연구)

  • Hwang Hee-Sun;Rhim Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.137-140
    • /
    • 2006
  • As underground construction is a large component of the cost of construction and a term of works in Top-Down construction, it is important to reduce the term of works in underground construction. The purpose of this study is to analyse buckling stress and load of prefounded columns as the process of excavation is changed, and propose a suitable process of excavation to increase the speed of works. When several floors are excavated, the valid buckling length of profounded column is increase and allowable buckling stress is decreased. The result shows that all columns are safe in buckling down to B3th story whether 2 stories or 3 stories are excavated straightly. However, several columns are not safe from B4th story when 2 or 3 stories are excavated straightly. With these results, a process can be designed that first B3 stories are excavated straightly, and then excavate B4th story putting concrete on B1st and B2nd story.

  • PDF

Specificity of Prefounded Column for Top-Down Construction (Top-Down 공사용 선기초기둥의 특성)

  • Kang, Seung-Ryong;Rhim, Hong-Chul;Kim, Seung-Weon;Park, Dae Young;Kim, Dong-Gun;Song, Jee-Yun;Jeong, Mee-Ra
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.135-139
    • /
    • 2008
  • For deep basement construction of buildings downtown, the usage of Top-Down Method is increasing as much as ever from strong demand. One of the essential elements for the construction by Top Down Method is the pre-founded columns, which are installed in the ground and on which a building is installed. The fact that the pre-founded columns are placed in the ground makes them susceptible to its plumbness; this aspect distinguishes pre-founded columns from general columns. However, there are no criteria for erection tolerance. Therefore, field-measured-data concerning out-of-plumb of pre-founded columns in the construction field should be accumulated and investigated so that criteria and specifications for the erection tolerance of pre-founded columns may be established through the understanding of its aspects. In this paper, we investigate out-of-plumb of pre-founded columns for the construction case and analyze its aspects, and propose considerations for design and construction phase.

  • PDF