• Title/Summary/Keyword: Preform shape

Search Result 116, Processing Time 0.023 seconds

Preform Design Technique by Tracing the Material Deformation Behavior (재료의 변형거동 추적을 통한 예비형상 설계)

  • Hong J. T.;Park C. H.;Lee S. R.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.503-508
    • /
    • 2004
  • Preform design techniques have been investigated to reduce die wear and forming load and to improve material flow, filling ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

A Study on the Open Die Forging Preform Shape of Crank Throw for Large Ship Engines (선박용 크랭크스로우의 자유 단조 예비성형체 형상)

  • 김동영;김영득;김동권;김재철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.191-194
    • /
    • 2003
  • A crank throw, which is one of the part of crankshaft for a large diesel engine, is manufactured by both closed die forging and open die forging. For the improvement of productivity the open die forging method is usually adopted to manufacture it these days. In case of the open die forging for the crank throw, a preform shape is very important because it seriously affects final dimensions of the product. The purpose of this study is to investigate affective factors of the preform to obtain a good shape of final product through simulation and the results are compared to downsized lead experiments.

  • PDF

Optimal Design of Preform in Hot forging (열간 단조에서의 최적 예비형상 설계)

  • Lee, S.R.;Lee, Y.G.;Park, C.H.;Yang, D.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.780-785
    • /
    • 2000
  • The equi-potential lines designed in the electric field are introduced to find the preform shape in axisymmetric hot forging. The equi-potential lines generated between two conductors of different voltages show similar trends of the minimum work paths between the undeformed shape and the deformed shape. Base on this similarity, the equi-potential lines obtained by arrangement of the initial and final shapes are utilized fur the design of preform, and then the artificial neural network is used to find the range of initial volume and potential value of the electric field.

  • PDF

HEAT TRANSFER ANALYSIS ON THE PREFORM HEATING AND THE GLASS FIBER DRAWING IN A GRAPHITE FURNACE FOR OPTICAL FIBER MANUFACTURING PROCESS (광섬유 생산공정용 퍼니스 내의 모재 가열 및 유리섬유 인출에 대한 열전달 해석)

  • Kim, K.;Kim, D.;Kwak, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.88-91
    • /
    • 2011
  • Glass fiber drawing from a silica preform is one of the most important processes in optical fiber manufacturing. High purify silica preform of cylindrical shape is fed into the graphite furnace, and then a very thin glass fiber of 125 micron diameter is drawn from the softened and heated preform. A computational analysis is performed to investigate the heat transfer characteristics of preform heating and the glass fiber drawing in the furnace. In addition to the dominant radiative heating of preform by the heating element in the furnace, present analysis also includes the convective heat transport by the gas flowing around the preform that experiences neck-dawn profile and the freshly drawn glass fiber at high fiber drawing speed. The computational results present the effects of gas flow on the temperature of preform and glass fiber as well as the neck-down profile of preform.

  • PDF

An Experimental Study on the Manufacturing Technology of an Engine Piston (자동차용피스톤의 제조기술에 관한 실험적 연구)

  • 김영호;배원병;김형식;변홍석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.83-92
    • /
    • 1998
  • In this paper, an experimental study has been carried out to develop an aluminum forged piston which has good mechanical properties. Through the experiment, the cavity filling, microstructure and mechanical properties of the final product are investigated with respect to chosen process parameters, which are die shape, heat-treatment condition and preform shape. The mechanical properties of the forged piston are compared with these of the cast piston. As the results, an appropriate die-shape is obtained to produce a perfect piston. The suitable heat-treatment condition and preform-shape are found to good hardness and minute microstructure in the forged piston. And we could obtain the mechanical properties(tensile strength, elongation and hardness) of the forged piston are superior to these of the cast piston.

  • PDF

A Preliminary Study on the Optimal Shape Design of the Axisymmetric Forging Component Using Equivalent Static Loads (등가정하중을 이용한 축대칭 단조품의 형상최적화에 관한 기초연구)

  • Jung, Ui-Jin;Lee, Jae-Jun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • An optimization method is proposed for preform and billet shape designs in the forging process by using the Equivalent Static Loads (ESLs). The preform shape is an important factor in the forging process because the quality of the final forging is significantly influenced by it. The ESLSO is used to determine the shape of the preform. In the ESLSO, nonlinear dynamic loads are transformed to the ESLs and linear response optimization is performed using the ESLs. The design is updated in linear response optimization and nonlinear analysis is performed with the updated design. The examples in this paper show that optimization using the ESLs is useful and the design results are satisfactory. Consequently, the optimal preform and billet shapes which produce the desired final shape have been obtained. Nonlinear analysis and linear response optimization of the forging process are performed using the commercial software LS-DYNA and NASTRAN, respectively.

민감도법을 이용한 단조 공정에서의 예비성형체 설계

  • 심현보;노현철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.291-296
    • /
    • 2000
  • The sensitivity method has been applied to find perform shape that results in the desired shape after forging. As a basic example, initial shape of specimen for the cylinder shape without barrelling after forging has been found. The method is then applied to various shapes of 3D free forging and initial shapes of the corresponding specimens after forging have been found successfully. The sensitivity method is proven to be an effective and accurate tool for the preform design.

  • PDF

Preform Design for Forging by the Sensitivity Method (단조공정에서 민감도법을 이용한 예비 성형체 설계)

  • Shim H. B.;Noh H. C.;Son K. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.180-185
    • /
    • 2001
  • The sensitivity method has been applied to find perform shape that results in the desired shape after forging. As a 2D example, initial shape of specimen for the cylinder shape without barrelling after forging has been found. The method is then applied to various shapes of 3D free forging and initial shapes of the corresponding specimens after forging have been found successfully. The sensitivity method is proven to be an effective and accurate tool for the preform design.

  • PDF

Optimal Design of the Punch Shape for a Housing Lower (펀치 형상에 따른 Housing Lower 최적 공정 설계)

  • Park, S.J.;Park, M.C.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.332-339
    • /
    • 2015
  • In the current paper, a cold forging sequence was developed to manufacture a precisely cold forged H/Lower, which is used as the air back unit in commercial automobiles. The preform shape of the H/Lower influences the dimensional accuracy and stiffness of the final product. The shape factor (SF) ratio and shape of the tools are considered as the design parameters to achieve adequate backward extrusion height and maintain appropriate thickness variations. The optimal conditions of the design parameters were determined by using an artificial neural network (ANN). To experimentally verify the optimal preform and tool shapes, the experiments of the backward extrusion of the H/Lower were executed. The process design methodology proposed in the current paper, can provide a more systematic and economically feasible means for designing the preform and tool shapes for cold forging.

A Study on the Manufacturing of an Aluminum Shift-Fork by Casting/Forging Process (주조/단조 기술을 이용한 알루미늄 쉬프트 포크 제조에 관한 연구)

  • 배원병;이승재;유민수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.193-197
    • /
    • 2002
  • In this study, the casting/forging process was applied to the Shift-Fork, a manual transmission part of automobiles. In the casting experiments, the effects of additives, Sr, Ti+B and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. When 0.03% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform and the highest tensile strength and elongation accomplished. And when 0.2% Ti+B were added into the molten Al-Si alloy, the highest values of tensile strength were obtained. The maximum hardness was in case of 0.2% Mg. In the forging experiment, it was confirmed that the optimal configuration of the cast preform could be predicted by FE analysis. To minimize the cost as the press size, the compact shape of preform was proposed to reduce the volume of flash. The modification of shape in designing preform was performed to attain a satisfactory performance in the areas where the mechanical strength were more required. By using FVM(Finite Volume Method) software, it was verified that a proposed casting design was available. To identify the relationship between effective strain and mechanical properties of the final forged product, the compression test was performed. As the result, the tensile strength and elongation of a cast preform were much higher than before forging. The minimum forging temperature was found 40$0^{\circ}C$ to save heating time.

  • PDF