• Title/Summary/Keyword: Preform shape

Search Result 116, Processing Time 0.023 seconds

Process Development to Form Net-Shape Nosing Shells by the Backward Tracing Scheme of the Rigid-Plastic FEM and Its Experimental Confirmation (강-소성 유한요소법의 역추적기법을 이용한 정밀정형 쉘 노우징 부품의 성형공정 개발과 실험적 증명)

  • Kim, Sang-Hyeon;Lee, Jin-Hui;Im, Hak-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2118-2133
    • /
    • 1996
  • A preform is designed by the backward tracing scheme of the rigid-plastic finite element method(FEM) for net-shape shell nosing components without machining after forming. The current process of the shell nosing requires cost-consuming machining to produce final products. Here, the backward tracing scheme of the rigid-plastic FEM, a novel method for preform design of metal forming processes, derives a sound preform for net-shape shell nosing product. The current process is simulated by the rigid-plastic finite element analysis to check the metal flow involved in the forming with a trial preform and its modified preform. The two preforms are found to be inadequate for net-shape shell nosing product. The first application of the back ward tracing scheme derives a preform producing a not-shape shell nosing product. The first application of the backward tracing scheme derives a preform producing a net-shape product numerically, but it is difficult to be formed economically as a preform. Thus an improved preform is designed by the badkward tracing scheme, which is suitable for net-shape manufacturing of the shell nosing components in view of economy of production and forming characteristics of the product. The preform in the current process and a modified preform are confirmed by a series of experiments and the results give the same deformation with the numerical ones. Finally the newly designed preform by the FEM was experimentally proved to be adequate in obtaining net-shape products.

Preform Design of the Bevel Gear for the Warm Forging using Artificial Neural Network (신경망을 이용한 정밀 베벨기어의 온간단조 예비성형체 설계)

  • 김동환;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.36-43
    • /
    • 2003
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. So, the design parameters related preform shape such as aspect ratio and chamfer length having an influence the formability of forged product are analyzed. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing preform shape in metal forming process.

Comparision between Forward Extrusion and Upsetting Process for Preform with Stepped Shape (단 달림 형상의 예비성형체 성형에 대한 전방압출과 업셋팅 공정의 비교)

  • Song D. H.;Park Y. B.;Kim M. E.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.82-85
    • /
    • 2000
  • In cold forging, the final product is usually given by multi-stage process and the preform with stepped shape can be manufactured through the various forging method. The forward extrusion and upsetting processes for preform with stepped shape have been analyzed by using the rigid-plastic finite element analysis code, InteFORM and compared for load and stroke according to ae reduction of weを An engineer should select the proper processes considering the capacity and the stroke of the corresponding press in the forging of the preform with stepped shape.

  • PDF

Process Design in Shell Nosing for Net-Shape Product by the Backward Tracing Schme of the Rigid-Plastic FEM (유한요소법의 역추적기법을 활용한 정밀정형 노우징 부품의 성형 공정설계)

  • 김상현;이진희;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.224-232
    • /
    • 1995
  • A process is designed by the backward tracing scheme of the rigid-plastic FEm for net-shape shell nosing component without machining after forming. The current process of the shell nosing industry requires cost-consuming machining to produce final product . The backward tracing scheme of the rigid-plastic FEM, a novel method in preform design of metal forming processes , derives a sound preform for net-shape shell nosing product . The current process is simulated to check the metal flow involved informing with a trial preform and its modified preform. It is found that the two preforms are not suitable for net-shape shell nosing product. Finally, a preform is desinged by the backward tracing scheme, which is suitable for net-shape manufacturing of the shell nosing component.

  • PDF

Design of Preform using equi-potential lines in Hot Forging (등전위면을 이용한 열간 단조에서의 예비형상 설계)

  • 이영규
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.71-74
    • /
    • 2000
  • The equi-potential lines designed in the electric field are introduced to find the preform shape in axisymmetric hot forging. The equi-potential lines generated between two conductors of different voltages show similar trends of the minimum work paths between the undeformed shape and the deformed shape. Base on this similarity the equi-potential lines obtained by arrangement of the initial and final shapes are utilized for the design of preform and then the artificial neural network is used to find the range of initial volume and potential value of the electric field.

  • PDF

Preform Design by the Sensitivity Method (민감도법을 이용한 자유단조 공정의 예비성형체 설계)

  • 심현보;노현철;서의권
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.294-301
    • /
    • 2001
  • The sensitivity method has been applied to find perform shape that results in the desired shape after foring. As a 2D example, initial shape of specimen for the cylinder shape without barrelling after forging has been found. The method is then applied to various shapes of 3D free forging and initial shapes of the corresponding specimens after forging have been found successfully The sensitivity method is proven to be an effective and accurate tool for the preform design.

  • PDF

The Optimal Preform Design for Automotive Differential Bevel Gear (자동차용 차동 베벨기어의 최적 예비성형체 설계)

  • 김병민;김동환;정구섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. The aspect ratio and chamfer length are considered as design parameters to achieve adequate metal distribution in the finish forging operation. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing the preform shape in metal forming process.

The Effect of Preform Shape for Hot-forging Process of Aluminum-alloy (예비성형체형상이 알루미늄합금의 열간단조공정에 미치는 영향)

  • Kwon, Y.M.;Lee, Y.S.;Song, J.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.106-110
    • /
    • 2001
  • A effective and accurate method of hot-forging process is essential to the design of optimized dies as well as workpiece of intial shape. the former is achieved by a proper forging sequence with invokes serious problem like excessive load and die wear, die failure, underfilling and lap defects. the latter is achieved by a proper preform design of case I, case II, case III. metal forming processes of aluminum-alloy forged at an effective strain and temperature are analyzed by the finite element method. the non-isothermal analysis have been compared with optimized in terms of preform shape.

  • PDF

Preform Design for the Sinter-forging Process of Arc-shaped Powdered Magnets (원호 형상을 가지는 분말자석 단조성형공정에서의 예비성형체 설계)

  • Kim, Seung-Ho;Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1999
  • Tube Process(TP) is one of the processes to produce permanent magnets. Advantage claimed for this process is that it can accmplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses deformable tube for densification of powder magnets. TP has, however, difficulties in manufacturing permanent magnets from Nd-Fe-B green powder due to folding resulted from large height reduction and localized densification. Therefore, an adequate preform is necessary to reduce folding resulted from large height reduction and localized densification. Therefore, an adequate preform is necessary to reduce folding, lead magnets into almost desired final shape and get uniform densification. In this paper, preform design for TP is carried out without a deformable tube to investigate the behaviour of magnet sinter-forging. Preform design is accomplished to increase the effective magnet area with a near net shape and uniform densification.

  • PDF

Preform Design Technique by Tracing The Material Deformation Behavior (재료의 변형거동 추적을 통한 예비형상 설계)

  • Hong J. T.;Park C. H.;Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.91-94
    • /
    • 2004
  • Preform design techniques have been investigated in efforts to reduce die wear and forming load and to improve material flow, filing ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

  • PDF