• Title/Summary/Keyword: Preform process

Search Result 271, Processing Time 0.026 seconds

Preform Design Technique by Tracing The Material Deformation Behavior (재료의 변형거동 추적을 통한 예비형상 설계)

  • Hong J. T.;Park C. H.;Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.91-94
    • /
    • 2004
  • Preform design techniques have been investigated in efforts to reduce die wear and forming load and to improve material flow, filing ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

  • PDF

A Study on the Manufacturing of an Aluminum Shift-Fork by Casting/Forging Process (주조/단조 기술을 이용한 알루미늄 쉬프트 포크 제조에 관한 연구)

  • 배원병;이승재;유민수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.193-197
    • /
    • 2002
  • In this study, the casting/forging process was applied to the Shift-Fork, a manual transmission part of automobiles. In the casting experiments, the effects of additives, Sr, Ti+B and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. When 0.03% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform and the highest tensile strength and elongation accomplished. And when 0.2% Ti+B were added into the molten Al-Si alloy, the highest values of tensile strength were obtained. The maximum hardness was in case of 0.2% Mg. In the forging experiment, it was confirmed that the optimal configuration of the cast preform could be predicted by FE analysis. To minimize the cost as the press size, the compact shape of preform was proposed to reduce the volume of flash. The modification of shape in designing preform was performed to attain a satisfactory performance in the areas where the mechanical strength were more required. By using FVM(Finite Volume Method) software, it was verified that a proposed casting design was available. To identify the relationship between effective strain and mechanical properties of the final forged product, the compression test was performed. As the result, the tensile strength and elongation of a cast preform were much higher than before forging. The minimum forging temperature was found 40$0^{\circ}C$ to save heating time.

  • PDF

Design of Preform in the Forging Process of the Ball-Joint Socket (볼조인트 소켓 단조 공정의 예비형상 설계)

  • Park C. H.;Lee S. R.;Shin H. K.;Yang D. Y.;Park Y. B.;Ahn B. G.;Kim Y. H.;Bae M. H.;Chung S. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.224-227
    • /
    • 2001
  • The preform design in metal forging plays a key role in improving product quality, such as ensuring defect-free property and proper metal flow. In industry, preforms are generally designed by the iterative trial-and-error approach, but this approach leads not only to significant tool cost but also to the down-time of the production equipment. It is thus necessary to reduce the time and the man-power through an effective method of perform design. In this paper, the equi-potential lines designed in the electric field are introduced to find the preform shape. The equi-potential lines obtained by the arrangement of the initial and final shapes are utilized for the design of the preform, and then applied for obtaining a fine preform in the foging process of the ball-joint socket.

  • PDF

Preform Design Technique by Tracing the Material Deformation Behavior (재료의 변형거동 추적을 통한 예비형상 설계)

  • Hong J. T.;Park C. H.;Lee S. R.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.503-508
    • /
    • 2004
  • Preform design techniques have been investigated to reduce die wear and forming load and to improve material flow, filling ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

A Process Design for Dlliptically Shaped Deep Drawing Products (타원형상 디프 드로잉 제품의 공정설계)

  • 배원락
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03a
    • /
    • pp.26-29
    • /
    • 1999
  • Process design for elliptically shaped deep drawing products is various according to size shape and specification of products. This study presents two approaches to design the preform that is a key process for elliptically shaped products, One of these is that cross-section of punch is circular. Another is that for the improvement of characteristics for final products the cross-section of the punch is similar to rectangular shape. After forming the preform process design of top-part drawing is the same. In the study blank shape and dimension are obtained by applying a numerical formula and surface area constancy.

  • PDF

The Effect of Pressure on the Properties of Carbon/Carbon Composites during the Carbonization Process

  • Joo, Hyeok-Jong;Oh, In-Hwan
    • Carbon letters
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • 4D carbon fiber preforms were manufactured by weaving method and their carbon fiber volume fractions were 50% and 60%. In order to form carbon matrix on the preform, coal tar pitch was used for matrix precursor and high density carbon/carbon composites were obtained by high densification process. In this process, manufacture of high density composites was more effective according to pressure increasement. When densificating the preform of 60% fiber volume fraction with 900 bar, density of the composites reached at 1.90 $g/cm^3$ after three times processing. Degree of pressure in the densification process controls macro pore but it can not affect micro pore. During the carbonization process, micro pore of the preform were filled fully by once or twice densification processing. But micro pore were not filled easily in the repeating process. Therefore, over three times densification processing is the filling micro pore.

  • PDF

Numerical Calculation of Permeability in Resin Transfer Molding (수지 이송 성형에서 투과율 계수의 수치적 계산)

  • Song, Young-Seok;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.83-86
    • /
    • 2003
  • Complete prediction of second order permeability tensor for three dimensional preform such as plain woven fabric and braided preform is critical to understand the resin transfer molding process of composites. The permeability can be obtained by various methods such as analytic, numerical, and experimental methods. For several decades, the permeability has studied numerically to avoid practical difficulty of many experiments. However, the predicted permeabilities are a bit wrong compared with experimentally measured data. In this study, numerical calculation of permeability was conducted for two kinds of preforms i.e., plain woven fabric and circular braided preform. In order to consider intra-tow flow in the unit cell of preform the proposed flow coupled model was used for plain woven fabric and the Brinkman equation was solved in the case of the braided preform.

  • PDF

The Process Design for Hot Forging of Bearing Hub Considering Flow Line (단류선을 고려한 베어링 허브의 열간 단조 공정설계)

  • Byun H. S.;No G. Y.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.428-431
    • /
    • 2005
  • This paper describes the process design for hot forging of bearing hub. Forging processes of bearing hub are simulated using the rigid-plastic finite element method. In the process called closed die forging without flash, the design of blocker geometry is of critical importance. Forging processes designs are take advantage of computer aided Process planning and experts. But that is difficult to predict metal flow line. So the preform is designed by the expert, and modified through predict metal flow line by CAE. This paper is to approach preform design considered defect such as metal flow and unfitting etc. at the finisher process.

  • PDF

RADIATIVE HEAT TRANSFER ANALYSIS OF GLASS FIBER DRAWING IN OPTICAL FIBER MANUFACTURING (광섬유 생산용 유리섬유 인출공정에 대한 복사 열전달 해석)

  • Kim, K.;Kim, D.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • In this study, the glass fiber drawing from a silica preform in the furnace for the optical fiber manufacturing process is numerically simulated by considering the radiative heating of cylindrically shaped preform. The one-dimensional governing equations of the mass, momentum, and energy conservation for the heated and softened preform are solved as a set of the boundary value problems along with the radiative transfer approximation between the muffle tube and the deformed preform shape, while the furnace heating is modeled by prescribing the temperature distribution of muffle tube. The temperature-dependent viscosity of silica plays an important role in formation of preform neck-down profile when the glass fiber is drawn at high speed. The calculated neck-down profile of preform and the draw tension are found to be reasonable and comparable to the actual results observed in the optical fiber industry. This paper also presents the effects of key operating parameters such as the muffle tube temperature distribution and the fiber drawing speed on the preform neck-down profile and the draw tension. Draw tension varies drastically even with the small change of furnace heating conditions such as maximum heating temperature and heating width, and the fine adjustment of furnace heating is required in order to maintain the appropriate draw tension of 100~200 g.

Microstructural Characteristics of Al-Pb Hyper-Monotectic Alloys Produced by Spray Cast Deposition Process (분사주조공정에 의하여 제조된 Al-Pb 과편정합금의 조직특성)

  • Bae, Cha-Hurn;Jeong, Hae-Young;Park, Heung-Il;Kim, Chang-Up;Lee, Sung-Ryeol
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.346-354
    • /
    • 1992
  • In Al-Pb monotectic alloys Pb particles are difficult to uniformly distribute over the Al matrix because of the gravity segregation of pb element. Therefore the effects of centrifugally spray casting process on microstructures and distributions of Pb particle were investigated. As the preform thickened the sine of Pb particle became larger, the amount of porosity became lower and microstructures showed the change from spray-deposition microstructures in the lower part of the preform to spray-casting microstructures in the upper part of it. The size of Pb particles, amount of porosity and splat layer boundaries in hot forged preform showed still less than of as-deposited preform.

  • PDF