• Title/Summary/Keyword: Preform

Search Result 465, Processing Time 0.023 seconds

Effect of Y2O3 Additive Amount on Densification of Reaction Bonded Silicon Carbides Prepared by Si Melt Infiltration into All Carbon Preform (완전 탄소 프리폼으로부터 Si 용융 침투에 의해 제조한 반응 소결 탄화규소의 치밀화에 미치는 Y2O3 첨가량의 영향)

  • Cho, Kyeong-Sik;Jang, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.301-311
    • /
    • 2021
  • The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500℃ for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 ℃ for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20 % apparent porosity and 96.9 % relative density.

Fabrication and mechanical properties of $Al/Al_2O_3$ composites by reactive metal penetration method (반응 금속 침투법에 의한 $Al/Al_2O_3$복합체의 제조 및 기계적 특성)

  • 윤영훈;홍상우;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.239-245
    • /
    • 2001
  • $Al/Al_2O_3$composites were prepared from the reaction of mullite preforms and amorphous silica in aluminum melt at $1100^{\circ}C$ for 5 hrs. The chemical reaction between mullite preform and aluminum melt has formed the interconnected microstructure. The metal content of $Al/Al_2O_3$composite was controlled with the variable of the apparent porosity according to the sintering temperature of mullite preforms; $1600^{\circ}C$,$ 1625^{\circ}C$, $1650^{\circ}C$ and $1700^{\circ}C$, the mechanical properties of $Al/Al_2O_3$composite were investigated upon the content of Al. The mullite preform sintered above $1600^{\circ}C$ showed the chemical reaction with the penetrated Al melt, but the mullite sintered at $1600^{\circ}C$ didnt react with aluminum melt owing to the non-wetting of Al melt/mullite preform. The influences of penetration direction on the mechanical properties of composites were considered with the two different models of the perpendicular pattern and the parallel pattern to the direction of Al melt penetration. With the increase of Al metal penetration content, the fracture strength of $Al/Al_2O_3$composite decreased and the fracture toughness of composite increased. The microstructure of $Al/Al_2O_3$composite was determined by the direction of metal penetration, but the fracture strength and fracture toughness of composite didnt show the dependence on metal penetration direction.

  • PDF

Characteristics in Microstructure of Particle Reinforced Al Matrix Composites Fabricated by Spray-Cast Forming Process (분사주조한 입자강화 알루미늄 복합재료의 미세조직 특성)

  • Park, Chong-Sung;Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.530-540
    • /
    • 1994
  • Aluminium-silicon alloy(JIS AC8A) matrix composites reinforced with SiC particles were fabricated by spray-cast forming process, and the microstructure of powders and preforms produced were studied by using an optical and scanning electron microscopy. SiC particles were co-sprayed by mixed phase injection method during the spray casting process. Most of the composite powders formed by this mixed phase injection method exhibit morphology of particle-embedded type, and some exhibits the morphology of particle attached type due to additional attachment of the SiC particles on the surface of the powders in flight. The preforms deposited were resulted in dispersed type microstructure. The pre-solidified droplets and the deposited preform of SiC-reinforced aluminium alloy exhibit finer equiaxed grain size than that of unreinforced aluminium alloy. Eutectic silicons of granular type are crystallized at the corner of the aluminum grains in the preforms deposited, and some SiC particles seem to act as nucleation sites for primary/eutectic silicon during solidification. Such primary/eutectic silicons seem to retard grain growth during the continued spray casting process. It is envisaged from the microstructural observations for the deposited preform that the resultant distribution of SiC injected particles in the Al-Si microsturcture is affected by the amount of liquid phase in the top part of the preform and by the solidification rate of the preform deposited.

  • PDF

Forging Process Design to Improve the Properties of Al Alloy Forged Part for Aerospace (항공기용 Al 합금 단조품의 특성 향상을 위한 단조 공정 설계)

  • Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.228-232
    • /
    • 2001
  • Fatigue strength, electrical conductivity and stress-corrosion-cracking resistance are considered as important factors at aircraft Al alloys, therefore Al7050 alloy has been developed to improve such properties. However, hammer-forged Al7050 parts showed the undesirable structures such as severe local grain coarsening and inhomogeneous material flow, resulted in the degraded mechanical properties. In this paper, process conditions are investigated for elimination of the grain coarsening and improved material flow during forging process by both of experiments and FEM analysis. Particular interest has been given to understand role of preform shape on the grain coarsening behavior and magnitude of the hammer forging load The use of preform has been beneficial for reduction of the forging load and elimination of the grain coarsening. However, in the cases of as received bar and the round bar, which was machined to 2.5mm thickness in surface layer, some degree of local grain coarsening behavior has been observed. The optimized preform shape could be properly designed by applying the FEM simulation.

  • PDF

A Physical Simulation of Powder Forged Con-Rod (승용차용 커넥팅로드의 분말단조시 예비성형체설계를 위한 실험적 연구)

  • 이정환;이영선;박종진;정형식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.35-46
    • /
    • 1996
  • The powder forging process offers beneficial material utilization as well as the minimization of finishing operations over that of conventionally forged rods. In the present work, the sintering behavior of Fe-2Cu-0.6C-0.35MnS, optimum preform design and forgeability of various forging conditions were investigated. This data were generated using a newly proposed sub-scaled con-rod specimen developed specifically to simulate the powder forging process. The results of present work, powder perform is so difficult to flow material into die cavity and mass flow has no effect on improving the strength. And, applied force to increase density of the specimen flowed material is greater than that of all repessing mode. On the contrary, the specimen flowed material became increased hardness of inside in contrast with all repressing mode, but the tensile strength were decreased with residual porosity in surface. Due to material flow characteristic of powder preform, the section of lower density in powder preform became also lower density in forged con-rod. So, preform design is very important in manufacturing powder forged connecting rod.

Study on numerical analysis and experiment of the injection/ blow molding of a preform of PET Bottle (페트용기 성형을 위한 프리폼 사출성형 및 블로우 성형의 실험 및 해석에 관한 연구)

  • Kim, Jeong-Soon;Kim, Jong-Deok;Kim, Ok-Rae;Kwon, Chang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1119-1124
    • /
    • 2008
  • This study presents the preform injection molding and the blow molding of the injection stretch-blow molding process for PET bottles. The numerical analysis of the injection molding and the blow molding of a preform is considered in this paper using CAE with a view to minimize the warpage and the thickness. In order to determine the design parameters and processing conditions in injection/blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, a three dimensional model has been introduced for the purpose and flow simulations of filling, post-filling and cooling process are carried out. The simulations resulted in the warpage in good agreement with the measurements. Also, from the result of numerical analysis, we appropriately predicted the warpage, deformation and thickness distribution along the product walls.

Development of Mandrel Forging Process for Large Conical Aluminum Shell (대형 원뿔형 알루미늄 실린더의 멘드렐 단조 공정 개발)

  • Nam, J.W.;Cho, J.R.;Lee, K.H.;Lee, I.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.276-280
    • /
    • 2018
  • This paper has developed a forging process for conical shells for making aluminum cylindrical large shells. An incremental forging process was applied to reduce forging loads and die cost. The preform is designed based on the crosssectional area of the final forged shape. Inner diameter of the preform for mandrel forging is constant, and outer diameter is conical so that it matches the cross-sectional area of the product. However, simulation confirmed that the larger diameter is smaller than predicted and the length is larger than predicted because in the initial stage of forging, the large diameter portion first comes into contact with the anvil at the initial stage of forging and stretches in longitudinal direction. So, it has developed a rule to design the preform considering 3-D deformation instead of plane strain deformation at the beginning stage of mandrel forging. The developed mandrel forging process can be applied to more similar products and economic benefits may be obtained.

Yakson vs. GHT Therapy Effects on Growth and Physical Response of Preterm Infants and on Maternal Attachment (약손요법이 미숙아의 성장 및 생리적 반응과 미숙아 어머니의 애착에 미치는 효과 - GHT[Gentle Human Touch]요법과 비교하여 -)

  • Im, Hye-Sang
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.2
    • /
    • pp.255-264
    • /
    • 2006
  • Purpose: This study is aimed to confirm the effects of Yakson therapy on the growth and physical response of preform infants, and maternal attachment to them compared with GHT therapy. Method: The design of this study is nonequivalent control group with repeated measuring by quasi experimental study. The subjects are preterm infants in 26 - 34 gestational age hospitalized in the NICU of 4 university hospitals with an experimental group of 15 and a control group of 14. Yakson therapy consists of three phases: laying a hand, caressing by hand, and laying a hand again taking 5 minutes for each phase. Result: As a result of administering Yakson therapy to preform infants; the average weight gain of the Yakson group was higher than that of the GHT group, but there is no significant difference between groups. The oxygen saturation and maternal attachment difference between the Yakson and the GHT group were not significant. Significant differences in the average daily increase of oral intake and apical pulse rate were observed between the Yakson group and GHT group. Conclusion: These data suggested that Yakson therapy may be an effective nursing intervention which can facilitate growth and physical response of preform infants.