• Title/Summary/Keyword: Prefabricated construction method

Search Result 86, Processing Time 0.032 seconds

Comparison of Totally Prefabricated Bridge Substructure Designed According to Korea Highway Bridge Design (KHBD) and AASHTO-LRFD

  • Kim, Tae-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.319-332
    • /
    • 2013
  • The purpose of this study was to investigate the design comparison of totally prefabricated bridge substructure system. Prefabricated bridge substructure systems are a relatively new and versatile alternative in substructure design that can offer numerous benefits. The system can reduce the work load at a construction site and can result in shorter construction periods. The prefabricated bridge substructures are designed by the methods of Korea Highway Bridge Code (KHBD) and load and resistance factor design (AASHTO-LRFD). For the design, the KHBD with DB-24 and DL-24 live loads is used. This study evaluates the design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. The computer program, reinforced concrete analysis in higher evaluation system technology was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints. This study documents the design comparison of totally prefabricated bridge substructure and presents conclusions and design recommendations based on the analytical findings.

Development of Top-Down Connection System to Solve the Problem of Construction Tolerances in Installing Prefabricated Beams to Pre-founded Columns (시공오차가 있는 선기초기둥에 공장제작보의 설치가 용이한 탑다운공사용 접합기술개발)

  • Kim, Seung-Weon;Jung, Hee-Weon;Park, Dae-Yung;Kim, Dong-Gun;Park, Joo-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.25-30
    • /
    • 2011
  • Almost prefounded columns for top-down construction certainly have construction tolerances in plan and plumbness. Therefore, it is very difficult to connect prefabricated beams to prefounded columns at each floor level after excavation by usual top-down connection method and this usual connection method leads to long construction time, increasing cost and decreasing quality. This paper presents a new method for connecting prefabricated beam to prefounded column with GROUT-JACKET CONNECTION SYSTEM consisting of sleeve, bearing-shear bands and grout. Details and illustrations of the connections and applications by GROUT-JACKET CONNECTION SYSTEM for the top-down construction are also included in this paper.

  • PDF

Seismic performance of prefabricated bridge columns with combination of continuous mild reinforcements and partially unbonded tendons

  • Koem, Chandara;Shim, Chang-Su;Park, Sung-Jun
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.541-557
    • /
    • 2016
  • Prefabricated bridge substructures provide new possibility for designers in terms of efficiency of creativity, fast construction, geometry control and cost. Even though prefabricated bridge columns are widely adopted as a substructure system in the bridge construction project recently, lack of deeper understanding of the seismic behavior of prefabricated bridge substructures cause much concern on their performance in high seismic zones. In this paper, experimental research works are presented to verify enhanced design concepts of prefabricated bridge piers. Integration of precast segments was done with continuity of axial prestressing tendons and mild reinforcing bars throughout the construction joints. Cyclic tests were conducted to investigate the effects of the design parameters on seismic performance. An analytical method for moment-curvature analysis of prefabricated bridge columns is conducted in this study. The method is validated through comparison with experimental results and the fiber model analysis. A parametric study is conducted to observe the seismic behavior of prefabricated bridge columns using the analytical study based on strain compatibility method. The effects of continuity of axial steel and tendon, and initial prestressing level on the load-displacement response characteristics, i.e., the strain of axial mild steels and posttensioned tendon at fracture and concrete crushing strain at the extreme compression fiber are investigated. The analytical study shows the layout of axial mild steels and posttensioned tendons in this experiment is the optimized arrangement for seismic performance.

Research on Facility Layout of Prefabricated Building Construction Site

  • Yang, Zhehui;Lu, Ying;Zhang, Xing;Sun, Mingkang;Shi, Yufeng
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.42-51
    • /
    • 2017
  • Due to the high degree of mechanization and the good environmental benefits, the prefabricated buildings are being promoted in China. The construction site layout of the prefabricated buildings has important influence on its safety benefit. However, few scholars have studied the safety problem on it. Firstly, in order to give a follow-up study foreshadowing the characteristics of prefabricated buildings are analyzed, the research assumptions are given and three types of safety buffers are established. And then a mult-objective model for the prefabricated buildings site layout is presented: taking into account the limits of noise, the coverage of the tower crane and the possibility of exceeding boundaries and overlapping, the constraints are and designed established respectively; Based on the improved System Layout Planning (SLP) method, the efficiency\cost\safety interaction matrices among the facilities are also founded for objective function. For the sake of convenience, a hypothetical facility layout case of the prefabricated building is used, the optimal solution of that is obtained in MATLAB with particle swarm algorithm (PSO), which proves the effectiveness of the model presented in this paper.

  • PDF

Analytical Study on Hybrid Prefabricated Retrofit Method for Reinforced Concrete Beams (철근 콘크리트 보의 보강을 위한 하이브리드 조립형 보강기법에 관한 해석적 연구)

  • Moon, Sang-Pil;Lee, Sung-Ho;Lee, Young-Hak;Kim, Min-Sook
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.71-79
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method that improve structural performance and reduce construction period was developed by using a finite element analysis. The hybrid prefabricated retrofit method consist of a Z-shaped side plate, a L-shaped lower plate, and a bottom plate containing an steel plate with openings. This shape has advantage that a retrofit method is possible regardless of the size of the beams and a follow-up process such as reinforcement bars placing are not required. The finite element analysis of hybrid Prefabricated retrofit method showed the most ideal stress distribution when the thickness of bottom plate was 10mm, the thickness of the L-shaped lower plate was 5mm, the thickness of the Z-shaped side plate was 2.5mm, and the bolt spacing was 200mm. The bending strength equation of Hybrid prefabricated retrofit method was proposed through the plastic stress distribution method in KDS 41 31 00. The result of Comparison the proposed equation with the finite element analysis, it is determined that the design of hybrid prefabricated retrofit method is possible through the KDS 41 31 00.

Fundamental Study on a New Evaluation Method of The Safety Prefabricated Scaffolds

  • Takahashi, Hiroki;Ohdo, Katsutoshi;Takanashi, Seiji
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • When a new member of a scaffold is developed, it is necessary to follow the standard. Therefore, all scaffolds will assume the same structure. The aim of this study was to establish a new method for evaluating scaffold performance. In the present study, a buckling analysis of prefabricated scaffolds was executed, using the shear rigidity of the vertical and the horizontal frames as parameters. From the results, an equation is proposed for evaluating the strength of prefabricated scaffolds.

A Study on the Improvement of Wall Execution Method on Hanok (한옥 축부(軸部) 시공법 개선 연구)

  • Kim, Do-Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2670-2675
    • /
    • 2010
  • Wall of hanok is related to exterior, inner environment, and the period and cost of construction. This study analyzes traditional wall execution method and suggests improved one. The characters of the improved execution method are use of ready made goods, application of dry and prefabricated method and improvement of airtightness and insulation capacity etc. The result of this study needs production of pilot productions and tests of capacity. But this new method will be useful to save the period and cost of hanok construction.

Development of a Height Adjustment Method of Prefabricated Individual Footing for the Leveling of Unit Modular Structural System (유닛모듈러 건축구조물의 수평 정밀도 확보를 위한 Pre-Fab 독립기초 높이조절 공법 개발)

  • Jun, Young-hun;Kim, Kyoon-Tai;Chae, Myung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.631-639
    • /
    • 2015
  • In the unit modular construction, the unit module prefabricated in a factory with a high level of accuracy does not fit completely onto the ground-joint junction due to the low accuracy of the ground work. This difference in the level of accuracy can cause diverse problems, such as twisting the upper unit modules and loosening the connection between the module and the footing. On this background, the aim of this study is to develop a technique for adjusting the height of the prefabricated individual footing. To accomplish the aim, a height adjustment method using bolts and nuts is proposed, and a shop drawing and the construction sequence are also presented in this study. The structural safety is verified through a structure simulation. In the future, research will be conducted on a mock-up test of the height adjustment method developed in this study, and an analysis of economic feasibility will be performed in order to verify its constructability and usability.

Applying Unit Modular In-Fill Construction Method for High-Rise Buildings

  • Moon, Sangdeok;Kim, Junyoung;Lee, Jaesung;Ock, Jongho
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.132-137
    • /
    • 2015
  • A modular construction method includes factory-prefabricated room-sized volumetric units. Although low-rise buildings have been constructed worldwide using this method for more than 30 years, it is a relatively new technology in high-rise construction. There are three basic methods of constructing high-rise buildings using modular construction: the core method, the core-and-podium combination method, and the modular in-fill method. While the first two have been used in the USA and in several European countries, the third method, introduced in 2011 by an international cruise ship development firm, is a rather new approach for which there are few case histories. Therefore, its applicability and construction feasibility should be verified. As a pilot study to test the applicability of the modular in-fill method, a 12-story residential building was built in Korea. This paper describes a case study of the pilot project. The advantages and disadvantages of the method and its applicability in terms of cost effectiveness and construction schedule management were evaluated.

  • PDF