This paper deals with MCMBPC(Multivariable Constrained Model Based Predictive Controller) for nonlinear boiler system with noise and disturbance. MCMBPC is designed by linear state space model obtained from some operating point of nonlinear boiler system and Kalman filter is used to estimate the state with noise and disturbance. The solution of optimization of the cost function constrained on input and/or output variables is achieved using quadratic programming, viz. singular value decomposition (SVD). The controller designed is shown to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.
Proceedings of the Korea Society for Simulation Conference
/
1999.10a
/
pp.247-253
/
1999
In this paper predictive PID control system using neural network (NNPPID) is proposed to control temperature system. NNPPID is composed of neural network predictor forecasts the future output of plant based on the present input and output of plant. Neural self-tuner yields parameters of PID controller. Experiments prove that NNPPID temperature control system has better performance than conventional PID control.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.4
/
pp.698-707
/
2017
This paper deals with predictive control methods of mobile robots for reference trajectory tracking control. Predictive control methods using predictive model are known as effective schemes that minimize the future errors between the reference trajectories and system states; however, the amount of real-time computation for the predictive control are huge so that their applications were limited to slow dynamic systems such as chemical processing plants. Lately with high computing power due to advanced computer technologies, the predictive control methods have been applied to fast systems such as mobile robots. These predictive controllers have some control parameters related to control performance. But these parameters have not been optimized. In this paper we employed the genetic algorithm to optimize the control parameters of the predictive controller for mobile robots. The improved performances of the proposed control method are demonstrated by the computer simulation studies.
International Journal of Computer Science & Network Security
/
v.24
no.1
/
pp.215-225
/
2024
Predictive maintenance has been considered fundamental in the industrial applications in the last few years. It contributes to improve reliability, availability, and maintainability of the systems and to avoid breakdowns. These breakdowns could potentially lead to system shutdowns and to decrease the production efficiency of the manufacturing plants. The present article aims to study how predictive maintenance could be planed into the production scheduling, through a systematic review of literature. . The review includes the research articles published in international journals indexed in the Scopus database. 165 research articles were included in the search using #predictive maintenance# AND #production scheduling#. Press articles, conference and non-English papers are not considered in this study. After careful evaluation of each study for its purpose and scope, 50 research articles are selected for this review by following the 2020 Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA) statement. A benchmarking of predictive maintenance methods was used to understand the parameters that contributed to improve the production scheduling. The results of the comparative analysis highlight that artificial intelligence is a promising tool to anticipate breakdowns. An additional impression of this study is that each equipment has its own parameters that have to be collected, monitored and analyzed.
Jo, Hang-Cheol;Byeon, Gyeong-Seok;Song, Jae-Bok;Jang, Hyo-Hwan;Choe, Yeong-Don
Transactions of the Korean Society of Mechanical Engineers B
/
v.25
no.4
/
pp.467-474
/
2001
The mathematical model of a air-conditioning system is generally very complex and difficult to apply to controller design. In this paper, simple models applicable to the controller design are obtained by modeling the air-conditioning system by single-input single-output between compressor speed and indoor temperature, and by multi-input single-output between compressor speed, indoor fan speed and indoor temperature. Using these empirical models, model predictive control(MPC) technique was implemented for indoor temperature control of the air-conditioning system. It has been shown from various experiments that the indoor temperature control based on the MPC scheme yields reasonably good tracking performance with smooth changes in plant inputs. this multi-input multi-output MPC approach can be extended to multi air- conditioning systems where the conventional PID control scheme is very difficult to apply.
Among the state-space description of discrete vent systems, the max-plus algebra is known as one of the effective approach. This paper proposes a model predictive control (MPC) design method based on the max-plus algebra. Several studies related to these topics have been done so far under the constraints that system parameters are constant. However, in practical systems such as production systems, it is common and sometimes inevitable that system parameters vary by each event. Therefore, it is of worth to design a new MPC controller taking account of adjustable system parameters. In this paper, we formulate system parameters as adjustable ones, and they are solved by a linear programing method. Since MPC determines optimal control input considering future reference signals, the controller can be more robust and the operation cost can be reduced. Finally, the proposed method is applied to a production system with three machines, and the effectiveness of the proposed method is verified through a numerical simulation.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.2
/
pp.133-142
/
2023
The large process plant is currently implementing predictive maintenance technology to transition from the traditional Time-Based Maintenance (TBM) approach to the Condition-Based Maintenance (CBM) approach in order to improve equipment maintenance and productivity. The traditional techniques for predictive maintenance involved managing upper/lower thresholds (Set-Point) of equipment signals or identifying anomalies through control charts. Recently, with the development of techniques for big analysis, machine learning-based AAKR (Auto-Associative Kernel Regression) and deep learning-based VAE (Variation Auto-Encoder) techniques are being actively applied for predictive maintenance. However, this predictive maintenance techniques is only effective during steady-state operation of plant equipment, and it is difficult to apply them during start-up and shutdown periods when rises or falls. In addition, unlike processes such as nuclear and thermal power plants, which operate for hundreds of days after a single start-up, because the pumped power plant involves repeated start-ups and shutdowns 4-5 times a day, it is needed the prediction and alarm algorithm suitable for its characteristics. In this study, we aim to propose an approach to apply the optimal predictive alarm algorithm that is suitable for the characteristics of Pumped Storage Power Plant(PSPP) facilities to the system by analyzing the predictive maintenance techniques used in existing nuclear and coal power plants.
For efficient predictive analysis, self-healing research is needed that enables the system to recover autonomously by self-cognition and diagnosing system problems. However, software development does not provide formal contextual information analysis and appropriate presentation structure according to external situation. In this paper, we propose a prediction analysis method based on the change contents by applying the extraction rule to the functions that can act, data, and transaction based on the new Goal-scenario. We also evaluated how well the predictive analysis met through the performance indicators for achieving the requirements goal. Compared with the existing methods, the proposed method has a maximum 32.8% higher matching result through performance measurement, resulting in a 28.9% error rate and a 45.8% reduction in the change code. This shows that it can be processed into a serviceable form through rules, and it shows that performance can be expanded through predictive analysis of changes.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.4
/
pp.602-610
/
2018
The model predictive control is an effective method to optimize the current control input that predicts the current control state and the future error using the predictive model of the control system when the reference trajectory is known. Since the control input can not have a physically infinitely large value, a predictive controller design with constraints should be considered. In addition, the reference model $A_r$ and the weight matrices Q, R that determine the control performance of the predictive controller are not optimized as arbitrarily designated should be considered in the controller design. In this study, we construct a predictive controller of a mobile robot by transforming it into a quadratic programming problem with constraints, The control performance of the mobile robot can be improved by optimizing the control parameters of the predictive controller that determines the control performance of the mobile robot using genetic algorithm. Through the computer simulation, the superiority of the proposed method is confirmed by comparing with the existing method.
Purpose: The aim of this study was to identify the predictive validity of the Korean Triage and Acuity Scale (KTAS). Methods: This methodological study used data from National Emergency Department Information System for 2016. The KTAS disposition and emergency treatment results for emergency patients aged 15 years and older were analyzed to evaluate its predictive validity through its sensitivity, specificity, positive predictive value, and negative predictive value. Results: In case of death in the emergency department, or where the intensive care unit admission was considered an emergency, the sensitivity, specificity, positive predictive value, and negative predictive value of the KTAS were 0.916, 0.581, 0.097, and 0.993, respectively. In case of death in the emergency department, or where the intensive or non-intensive care unit admission was considered an emergency, the sensitivity, specificity, and positive predictive value, and negative predictive value were 0.700, 0.642, 0.391, and 0.867, respectively. Conclusion: The results of this study showed that the KTAS had high sensitivity but low specificity. It is necessary to constantly review and revise the KTAS level classification because it still results in a few errors of under and over-triage. Nevertheless, this study is meaningful in that it was an evaluation of the KTAS for the total cases of adult patients who sought help at regional and local emergency medical centers in 2016.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.