• Title/Summary/Keyword: Predictive Power Competition

Search Result 5, Processing Time 0.02 seconds

Competition between Online Stock Message Boards in Predictive Power: Focused on Multiple Online Stock Message Boards

  • Kim, Hyun Mo;Park, Jae Hong
    • Asia pacific journal of information systems
    • /
    • v.26 no.4
    • /
    • pp.526-541
    • /
    • 2016
  • This research aims to examine the predictive power of multiple online stock message boards, namely, NAVER Finance and PAXNET, which are the most popular stock message boards in South Korea, in stock market activities. If predictive power exists, we then compare the predictive power of multiple online stock message boards. To accomplish the research purpose, we constructed a panel data set with close price, volatility, Spell out acronyms at first mention.PER, and number of posts in 40 companies in three months, and conducted a panel vector auto-regression analysis. The analysis results showed that the number of posts could predict stock market activities. In NAVER Finance, previous number of posts positively influenced volatility on the day. In PAXNET, previous number of posts positively influenced close price, volatility, and PER on the day. Second, we confirmed a difference in the prediction power for stock market activities between multiple online stock message boards. This research is limited by the fact that it only considered 40 companies and three stock market activities. Nevertheless, we found correlation between online stock message board and stock market activities and provided practical implications. We suggest that investors need to focus on specific online message boards to find interesting stock market activities.

Does Specialization Matter for Trade Imbalance at Industry Level?

  • Song, E. Young;Zhao, Chen
    • East Asian Economic Review
    • /
    • v.16 no.3
    • /
    • pp.227-247
    • /
    • 2012
  • This paper investigates the source of bilateral trade imbalance at industry level. We build a simple model based on gravity theory and derive the prediction that the bilateral trade balance in an industry is increasing in the difference between trading partners in the output share of the industry. We test this prediction and find that the difference in industry share is highly significant in predicting both the sign and the magnitude of trade balance at industry level. We also find that FTAs tend to enlarge trade imbalance at industry level. However, the overall predictive power of the model is rather limited, suggesting that factors other than production specialization are important in determining trade balance at industry level. Another finding of the paper is that the influence of the difference in industry share on trade balance increases as we move to industries that produce more homogeneous products. This finding calls into question monopolistic competition as the main driver of gravity in international trade.

  • PDF

The Effect of TV Home Shopping Service Quality on Relationship Commitment and Customer Loyalty -Fashion Products- (TV홈쇼핑 서비스품질의 관계몰입과 고객충성도에 대한 영향 -패션제품을 중심으로-)

  • Hong, Keum Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.6
    • /
    • pp.899-909
    • /
    • 2015
  • TV home shopping maintains annual growth in the midst of harsh competition by numerous fashion retail channels. This study investigated the dimensions of service quality of TV home shopping for fashion products as well as the effect of service quality on relationship commitment and customer loyalty. Questionnaires were distributed to consumers in their 20s to 40s who purchased fashion products via TV home shopping in the past 6 months. A total of 240 questionnaires were put into the analysis. The results are as follows. First, four dimensions of service quality of TV home shopping were found: convenience, economy, entertainment, and information seeking. Relationship commitment had two dimensions of affective commitment and calculative commitment. Second, the service quality of TV home shopping affected customer loyalty through a relationship commitment. The predictors of affective commitment were entertainment, economy, and information seeking; in addition, those of calculative commitment were economy and entertainment. Third, both affective commitment and calculative commitment predicted customer loyalty to TV home shopping. The affective commitment had more predictive power. The findings show that the service quality of TV home shopping did not directly affect customer loyalty, but they had influence through relationship commitment variables. Entertainment and economy were the most powerful predictors among service quality dimensions.

The Effect of International Capital Flows on Corporate Capital Structures: Empirical Evidence from Vietnam

  • TRAN, Tung Van;HOANG, Tri M.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.263-276
    • /
    • 2021
  • This study examines the effect of international capital flows on corporate capital structures in Vietnam by analyzing panel data from all non-financial listed firms from 2005 to 2014 using pooled ordinary least square (OLS) with a variance estimator. The analysis includes a comparison of the signs and significance of the variable coefficients from the perking order and static trade-off theories to the empirical results to determine the optimum approach to the corporate capital structure given Vietnam's high-inflation environment. The results indicate that international capital flows have a positive relation to the debt ratio in the long term, and the relationship is more robust for 2005-2009 than for 2010-2014. Corporate capital structures adjusted to changes in the business environment in different sub-periods (2005-2009 and 2010-2014). When the economic environment became more favorable, the pecking order theory's predictive power increased, and that of trade-off theory lessened. Manufacturing and non-manufacturing firms required different capital structure decisions to fuel their operations and grow under foreign competition. The analysis demonstrates that firms should intensify their use of long-term debt relative to the availability of capital, which is an implication not only for firms in particular but also for industrial innovation overall.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.