• 제목/요약/키워드: Predictive Accuracy

검색결과 828건 처리시간 0.026초

Deep learning method for compressive strength prediction for lightweight concrete

  • Yaser A. Nanehkaran;Mohammad Azarafza;Tolga Pusatli;Masoud Hajialilue Bonab;Arash Esmatkhah Irani;Mehdi Kouhdarag;Junde Chen;Reza Derakhshani
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.327-337
    • /
    • 2023
  • Concrete is the most widely used building material, with various types including high- and ultra-high-strength, reinforced, normal, and lightweight concretes. However, accurately predicting concrete properties is challenging due to the geotechnical design code's requirement for specific characteristics. To overcome this issue, researchers have turned to new technologies like machine learning to develop proper methodologies for concrete specification. In this study, we propose a highly accurate deep learning-based predictive model to investigate the compressive strength (UCS) of lightweight concrete with natural aggregates (pumice). Our model was implemented on a database containing 249 experimental records and revealed that water, cement, water-cement ratio, fine-coarse aggregate, aggregate substitution rate, fine aggregate replacement, and superplasticizer are the most influential covariates on UCS. To validate our model, we trained and tested it on random subsets of the database, and its performance was evaluated using a confusion matrix and receiver operating characteristic (ROC) overall accuracy. The proposed model was compared with widely known machine learning methods such as MLP, SVM, and DT classifiers to assess its capability. In addition, the model was tested on 25 laboratory UCS tests to evaluate its predictability. Our findings showed that the proposed model achieved the highest accuracy (accuracy=0.97, precision=0.97) and the lowest error rate with a high learning rate (R2=0.914), as confirmed by ROC (AUC=0.971), which is higher than other classifiers. Therefore, the proposed method demonstrates a high level of performance and capability for UCS predictions.

Improving the Specificity of CT Angiography for the Diagnosis of Hepatic Artery Occlusion after Liver Transplantation in Suspected Patients with Doppler Ultrasound Abnormalities

  • Jin Sil Kim;Dong Wook Kim;Kyoung Won Kim;Gi Won Song;Sung Gyu Lee
    • Korean Journal of Radiology
    • /
    • 제23권1호
    • /
    • pp.52-59
    • /
    • 2022
  • Objective: To investigate whether the diagnostic performance of CT angiography (CTA) could be improved by modifying the conventional criterion (anastomosis site abnormality) to diagnose hepatic artery occlusion (HAO) after liver transplantation (LT) in suspected patients with Doppler ultrasound (US) abnormalities. Materials and Methods: One hundred thirty-four adult LT recipients (88 males and 46 females; mean age, 52.7 years) with suspected HAO on Doppler US (40 HAO and 94 non-HAO according to the reference standards) were included. We evaluated 1) abnormalities in the HA anastomosis, categorized as a cutoff, ≥ 50% stenosis at the anastomotic site, or diffuse stenosis at both graft and recipient sides around the anastomosis, and 2) abnormalities in the distal run-off, including invisibility or irregular, faint, and discontinuous enhancement. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the conventional (considering anastomosis site abnormalities alone) and modified CTA criteria (abnormalities in both the anastomosis site and distal run-off) for the diagnosis of HAO were calculated and compared using the McNemar test. Results: By using the conventional criterion to diagnose HAO, the sensitivity, specificity, PPV, NPV, and accuracy were 100% (40/40), 74.5% (70/94), 62.5% (40/64), 100% (70/70), and 82.1% (110/134), respectively. The modified criterion for diagnosing HAO showed significantly increased specificity (93.6%, 88/94) and accuracy (93.3%, 125/134) compared to that with the conventional criterion (p = 0.001 and 0.002, respectively), although the sensitivity (92.5%, 37/40) decreased slightly without statistical significance (p = 0.250). Conclusion: The modified criterion considering abnormalities in both the anastomosis site and distal run-off improved the diagnostic performance of CTA for HAO in suspected patients with Doppler US abnormalities, particularly by increasing the specificity.

Prediction of Paroxysmal Atrial Fibrillation using Time-domain Analysis and Random Forest

  • Lee, Seung-Hwan;Kang, Dong-Won;Lee, Kyoung-Joung
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권2호
    • /
    • pp.69-79
    • /
    • 2018
  • The present study proposes an algorithm that can discriminate between normal subjects and paroxysmal atrial fibrillation (PAF) patients, which is conducted using electrocardiogram (ECG) without PAF events. For this, time-domain features and random forest classifier are used. Time-domain features are obtained from Poincare plot, Lorenz plot of ${\delta}RR$ interval, and morphology analysis. Afterward, three features are selected in total through feature selection. PAF patients and normal subjects are classified using random forest. The classification result showed that sensitivity and specificity were 81.82% and 95.24% respectively, the positive predictive value and negative predictive value were 96.43% and 76.92% respectively, and accuracy was 87.04%. The proposed algorithm had an advantage in terms of the computation requirement compared to existing algorithm, so it has suggested applicability in the more efficient prediction of PAF.

Bayesian Modeling of Mortality Rates for Colon Cancer

  • Kim Hyun-Joong
    • Communications for Statistical Applications and Methods
    • /
    • 제13권1호
    • /
    • pp.177-190
    • /
    • 2006
  • The aim of this study is to propose a Bayesian model for fitting mortality rate of colon cancer. For the analysis of mortality rate of a disease, factors such as age classes of population and spatial characteristics of the location are very important. The model proposed in this study allows the age class to be a random effect in addition to its conventional role as the covariate of a linear regression, while the spatial factor being a random effect. The model is fitted using Metropolis-Hastings algorithm. Posterior expected predictive deviances, standardized residuals, and residual plots are used for comparison of models. It is found that the proposed model has smaller residuals and better predictive accuracy. Lastly, we described patterns in disease maps for colon cancer.

Design and Implementation of a Robust Predictive Control Scheme for Active Power Filters

  • Han, Yang;Xu, Lin
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.751-758
    • /
    • 2011
  • This paper presents an effective robust predictive control scheme for the active power filter (APF) using a smith-predictor based current regulator, which show superior features when compared to proportional-integral (PI) controllers in terms of an enhanced closed-loop bandwidth and an improved current tracking accuracy. A moving average filter (MAF) is implemented using a field programmable gate array (FPGA) for signal pre-processing to eliminate the switching ripple contamination. An adaptive linear neural network (ADALINE) is used for individual harmonic estimation to achieve selective compensation purpose. The effectiveness and validity of the devised control algorithm are confirmed by extensive simulation and experimental results.

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • 제6권2호
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

Research on Early Academic Warning by a Hybrid Methodology

  • Lun, Guanchen;Zhu, Lu;Chen, Haotian;Jeong, Dongwon
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.21-22
    • /
    • 2021
  • Early academic warning is considered as an inherent problem in education data mining. Early and timely concern and guidance can save a student's university career. It is widely assumed as a multi-class classification system in view of machine learning. Therefore, An accurate and precise methodical solution is a complicated task to accomplish. For this issue, we present a hybrid model employing rough set theory with a back-propagation neural network to ameliorate the predictive capability of the system with an illustrative example. The experimental results show that it is an effective early academic warning model with an escalating improvement in predictive accuracy.

  • PDF

원자로냉각재펌프 예측진단 기술개발 현황 및 추진방안 (The Study of Predictive Diagnosis Technology Development Status and Promotion Plan for Reactor Coolant Pump)

  • 김희찬
    • 한국압력기기공학회 논문집
    • /
    • 제19권1호
    • /
    • pp.44-51
    • /
    • 2023
  • The RCP is one of the main components in nuclear power plants and plays an important role in circulating coolant to the RCS system. Currently, nuclear plants are monitored using various monitoring systems. However, since they operate independently according to their functional purpose, it is not able to analyze vibration and operation/performance information comprehensively, and thus failure diagnosis accuracy is limited. In addition, these systems do not provide some important information (such as fault type, parts and cause) necessary for emergency actions, but provide only alarm information. To improve these technical problems, this study proposes a diagnosis technique (M/L, Rule-based model, Data-driven model, Narrow band model) and methodology for comprehensive analysis.

Crack growth prediction on a concrete structure using deep ConvLSTM

  • Man-Sung Kang;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • 제33권4호
    • /
    • pp.301-311
    • /
    • 2024
  • This paper proposes a deep convolutional long short-term memory (ConvLSTM)-based crack growth prediction technique for predictive maintenance of structures. Since cracks are one of the critical damage types in a structure, their regular inspection has been mandatory for structural safety and serviceability. To effectively establish the structural maintenance plan using the inspection results, crack propagation or growth prediction is essential. However, conventional crack prediction techniques based on mathematical models are not typically suitable for tracking complex nonlinear crack propagation mechanism on civil structures under harsh environmental conditions. To address the technical issue, a field data-driven crack growth prediction technique using ConvLSTM is newly proposed in this study. The proposed technique consists of the four steps: (1) time-series crack image acquisition, (2) target image stabilization, (3) deep learning-based crack detection and quantification and (4) crack growth prediction. The performance of the proposed technique is experimentally validated using a concrete mock-up specimen by applying step-wise bending loads to generate crack growth. The validation test results reveal the prediction accuracy of 94% on average compared with the ground truth obtained by field measurement.

A Multi-Sensor Fire Detection Method based on Trend Predictive BiLSTM Networks

  • Gyu-Li Kim;Seong-Jun Ro;Kwangjae Lee
    • 센서학회지
    • /
    • 제33권5호
    • /
    • pp.248-254
    • /
    • 2024
  • Artificial intelligence techniques have improved fire-detection methods; however, false alarms still occur. Conventional methods detect fires using current sensors, which can lead to detection errors due to temporary environmental changes or noise. Thus, fire-detection methods must include a trend analysis of past information. We propose a deep-learning-based fire detection method using multi-sensor data and Kendall's tau. The proposed system used a BiLSTM model to predict fires using pre-processed multi-sensor data and extracted trend information. Kendall's tau indicates the trend of a time-series data as a score; therefore, it is easy to obtain a target pattern. The experimental results showed that the proposed system with trend values recorded an accuracy of 99.93% for BiLSTM and GRU models in a 20-tap moving average filter and 40% fire threshold. Thus, the proposed trend approach is more accurate than that of conventional approaches.