• 제목/요약/키워드: Prediction of entry into hazardous areas

검색결과 1건 처리시간 0.011초

보행자 경로 예측 기법을 이용한 위험구역 진입 여부 결정과 Knowledge Distillation을 이용한 작은 모델 학습 개선 (Determining Whether to Enter a Hazardous Area Using Pedestrian Trajectory Prediction Techniques and Improving the Training of Small Models with Knowledge Distillation)

  • 최인규;이영한;송혁
    • 한국정보통신학회논문지
    • /
    • 제25권9호
    • /
    • pp.1244-1253
    • /
    • 2021
  • 본 논문에서는 보행자 경로 예측 기법을 이용하여 보행자들이 현재 시점 이후로 위험구역으로 진입하는지 사전에 예측하는 방법과 경로 예측 네트워크의 효율적인 간소화 방법을 제안한다. 그리고 임베디드 환경에서 실시간 운용을 위해 작은 네트워크에 대하여 KD(Knowledge Distillation)을 적용하는 방법을 제안한다. 예측된 미래 경로와 위험구역 간의 상관관계를 이용하여 진입 여부를 판단하였으며 작은 네트워크를 학습할 때 효율적인 KD를 적용하여 성능저하를 최소화하였다. 실험을 통하여, 제안하는 간소화 기법을 적용한 모델이 기존 모델과 비교하여 37.49%의 속도향상 대비 미미한 정확도 저하를 이끌어 내는 것을 보여 주었다. 또한, 91.43%의 정확도를 가진 작은 네트워크를 KD를 이용하여 학습한 결과 94.76%의 향상된 정확도를 보임을 확인하였다.