• Title/Summary/Keyword: Prediction of entry into hazardous areas

Search Result 1, Processing Time 0.015 seconds

Determining Whether to Enter a Hazardous Area Using Pedestrian Trajectory Prediction Techniques and Improving the Training of Small Models with Knowledge Distillation (보행자 경로 예측 기법을 이용한 위험구역 진입 여부 결정과 Knowledge Distillation을 이용한 작은 모델 학습 개선)

  • Choi, In-Kyu;Lee, Young Han;Song, Hyok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1244-1253
    • /
    • 2021
  • In this paper, we propose a method for predicting in advance whether pedestrians will enter the hazardous area after the current time using the pedestrian trajectory prediction method and an efficient simplification method of the trajectory prediction network. In addition, we propose a method to apply KD(Knowledge Distillation) to a small network for real-time operation in an embedded environment. Using the correlation between predicted future paths and hazard zones, we determined whether to enter or not, and applied efficient KD when learning small networks to minimize performance degradation. Experimentally, it was confirmed that the model applied with the simplification method proposed improved the speed by 37.49% compared to the existing model, but led to a slight decrease in accuracy. As a result of learning a small network with an initial accuracy of 91.43% using KD, It was confirmed that it has improved accuracy of 94.76%.