• 제목/요약/키워드: Prediction of Power Generation

검색결과 229건 처리시간 0.029초

철도인프라용 태양광발전시스템 확대를 위한 기상정보 활용 발전량 예측 비교 연구 (Comparative Study to Predict Power Generation using Meteorological Information for Expansion of Photovoltaic Power Generation System for Railway Infrastructure)

  • 유복종;박찬배;이주
    • 한국철도학회논문집
    • /
    • 제20권4호
    • /
    • pp.474-481
    • /
    • 2017
  • 국내에서 태양광 발전설비 설계 시 설계 단계에서의 태양광발전소의 발전량 예측은 국내 현장임에도 불구하고 PVsyst, PVWatts 등 해외 발전량 예측 프로그램과 해외 기상 자료를 이용하여 발전량을 예측하는 경우가 대부분을 차지하고 있는 실정이다. 본 논문에서는 기상정보를 활용한 발전량 예측 비교 연구를 위하여 현재 운영중인 2개 지역의 국내 태양광발전소를 대상지로 선정하였다. 발전량 예측 프로그램인 PVsyst를 활용하여 Meteonorm 7.1과 NASA-SSE의 해외 기상정보를 이용한 발전량 예측값과 국내 기상청 (Korea Meteorology Administration) 기상정보를 활용한 발전량 예측 정확성을 비교하였다. 추가적으로, 기상자료 비교 분석을 통한 발전량 예측 개선 방안을 연구하고, 최종적으로 실제 발전량과의 비교 분석을 통해 기후요소가 고려된 태양광 발전량 예측 수정 모델을 제시하였다.

현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측 (Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

일반화 가법모형을 이용한 태양광 발전량 예측 알고리즘 (Solar Power Generation Prediction Algorithm Using the Generalized Additive Model)

  • 윤상희;홍석훈;전재성;임수창;김종찬;박철영
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1572-1581
    • /
    • 2022
  • Energy conversion to renewable energy is being promoted to solve the recently serious environmental pollution problem. Solar energy is one of the promising natural renewable energy sources. Compared to other energy sources, it is receiving great attention because it has less ecological impact and is sustainable. It is important to predict power generation at a future time in order to maximize the output of solar energy and ensure the stability and variability of power. In this paper, solar power generation data and sensor data were used. Using the PCC(Pearson Correlation Coefficient) analysis method, factors with a large correlation with power generation were derived and applied to the GAM(Generalized Additive Model). And the prediction accuracy of the power generation prediction model was judged. It aims to derive efficient solar power generation in the future and improve power generation performance.

그림자 효과를 고려한 태양전지 모듈의 발전량 예측 연구 (Prediction Study of Solar Modules Considering the Shadow Effect)

  • 김민수;지상민;오수영;정재학
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.80-86
    • /
    • 2016
  • Since the last five years it has become a lot of solar power plants installed. However, by installing the large-scale solar power station it is not easy to predict the actual generation years. Because there are a variety of factors, such as changes daily solar radiation, temperature and humidity. If the power output can be measured accurately it predicts profits also we can measure efficiency for solar power plants precisely. Therefore, Prediction of power generation is forecast to be a useful research field. In this study, out discovering the factors that can improve the accuracy of the prediction of the photovoltaic power generation presents the means to apply them to the power generation amount prediction.

영농형 태양광 발전의 진단을 위한 지능형 예측 시스템 (Intelligent Prediction System for Diagnosis of Agricultural Photovoltaic Power Generation)

  • 정설령;박경욱;이성근
    • 한국전자통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.859-866
    • /
    • 2021
  • 영농형 태양광 발전은 농지 상부에 태양광 발전 설비를 설치하는 방식으로 농작물과 전기를 동시에 생산함으로써 농가 소득을 증대시키는 새로운 모델이다. 최근 영농형 태양광 발전을 활용하는 다양한 시도들이 이루어지고 있다. 영농형 태양광 발전은 기존의 태양광 발전과는 달리 비교적 높은 구조물 상부에 설치하게 되므로 유지 보수가 상대적으로 어렵다는 단점이 있다. 이러한 문제를 해결하기 위해 지능적이고 효율적인 운용 및 진단 기능이 요구된다. 본 논문에서는 영농형 태양광 발전 설비의 전력 생산량을 수집, 저장하여 지능적인 예측 모델을 구현하기 위한 예측 및 진단 시스템의 설계 및 구현에 대해 논한다. 제안된 시스템은 태양광 발전량과 환경 센서 데이터를 기반으로 발전량을 예측하여 설비의 이상 유무를 판별하며 설비의 노화 정도를 산출하여 사용자에게 제공한다.

정확도 향상을 위한 CNN-LSTM 기반 풍력발전 예측 시스템 (CNN-LSTM based Wind Power Prediction System to Improve Accuracy)

  • 박래진;강성우;이재형;정승민
    • 신재생에너지
    • /
    • 제18권2호
    • /
    • pp.18-25
    • /
    • 2022
  • In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.

딥러닝을 이용한 풍력 발전량 예측 (Prediction of Wind Power Generation using Deep Learnning)

  • 최정곤;최효상
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.329-338
    • /
    • 2021
  • 본 연구는 풍력발전의 합리적인 운영 계획과 에너지 저장창치의 용량산정을 위한 풍력 발전량을 예측한다. 예측을 위해 물리적 접근법과 통계적 접근법을 결합하여 풍력 발전량의 예측 방법을 제시하고 풍력 발전의 요인을 분석하여 변수를 선정한다. 선정된 변수들의 과거 데이터를 수집하여 딥러닝을 이용해 풍력 발전량을 예측한다. 사용된 모델은 Bidirectional LSTM(:Long short term memory)과 CNN(:Convolution neural network) 알고리즘을 결합한 하이브리드 모델을 구성하였으며, 예측 성능 비교를 위해 MLP 알고리즘으로 이루어진 모델과 오차를 비교하여, 예측 성능을 평가하고 그 결과를 제시한다.

제한적인 환경에서 현재 기온 데이터에 기반한 태양광 발전 예측 모델 개발 (The Development of the Predict Model for Solar Power Generation based on Current Temperature Data in Restricted Circumstances)

  • 이현진
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권3호
    • /
    • pp.157-164
    • /
    • 2016
  • 태양광 발전량은 날씨에 큰 영향을 받는다. 기상 예보를 사용할 수 있는 환경이라면, 기상 예보 정보를 사용하여 미래의 태양광 발전량을 단기예측 할 수 있다. 하지만, 섬이나 산과 같이 네트워크의 단절에 의해 기상예보 정보를 사용할 수 없는 제한된 환경에서는 기상예보를 사용한 태양광 발전량 예측 모델을 사용할 수 없다. 따라서 본 논문에서는 시스템 자체적으로 수집할 수 있는 정보만을 이용하여 태양광 발전량을 단기 예측할 수 있는 시스템을 제안하였다. 예측의 정확도를 높이기 위하여 이전 온도정보와 발전량 정보를 이용하여 단기 예측모델을 생성하였다. 실험을 통하여 실데이터에 제안한 예측 모델을 적용하여 유용한 결과를 보였다.

크리깅 기법 기반 재생에너지 환경변수 예측 모형 개발 (Development of Prediction Model for Renewable Energy Environmental Variables Based on Kriging Techniques)

  • 최영도;백자현;전동훈;박상호;최순호;김여진;허진
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.223-228
    • /
    • 2019
  • In order to integrate large amounts of variable generation resources such as wind and solar reliably into power grids, accurate renewable energy forecasting is necessary. Since renewable energy generation output is heavily influenced by environmental variables, accurate forecasting of power generation requires meteorological data at the point where the plant is located. Therefore, a spatial approach is required to predict the meteorological variables at the interesting points. In this paper, we propose the meteorological variable prediction model for enhancing renewable generation output forecasting model. The proposed model is implemented by three geostatistical techniques: Ordinary kriging, Universal kriging and Co-kriging.

ESS 용량 산정을 위한 다층 퍼셉트론을 이용한 풍력 발전량 예측 (Prediction of Wind Power Generation for Calculation of ESS Capacity using Multi-Layer Perceptron)

  • 최정곤;최효상
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.319-328
    • /
    • 2021
  • 본 논문에서는 풍력 발전 수익 극대화 및 비용 최소화를 위해 설치하는 ESS에 대하여 정확한 용량 산정을 하기 위한 목적으로 풍력 단지용 전력량 예측을 다층 퍼셉트론을 이용하여 수행한다. 풍력 발전량을 예측하기 위해 풍속, 풍향, 공기밀도를 변수로 하고 그 변수를 병합하고 정규화한다. 모델을 훈련시키기 위해 병합된 변수를 70% 대 30% 비율로 훈련 및 테스트 데이터로 나눈다. 그런 다음 학습 데이터를 사용하여 모델을 학습시키고 테스트 데이터를 사용하여 모델의 예측 성능도 평가한다. 마지막으로 풍력량 예측 결과를 제시한다.