• Title/Summary/Keyword: Prediction Performance

Search Result 5,497, Processing Time 0.035 seconds

A Study on the Performance Prediction and Evaluation of Scale Down Noise Reducing Device on the Top of Noise Barrier (축소모형 방음벽 상단장치의 성능예측 및 평가에 관한 연구)

  • Yoon, Je-Won;Kim, Young-Chan;Jang, Kang-Seok;Hong, Byung-Kook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2844-2851
    • /
    • 2011
  • The purpose of this study is to set up an acoustic prediction technique and to perform the IL test of scale down noise reducing device for the development of the noise reducing device as the development of 400km/h class high speed train. First of all, the IL prediction of noise reducing device was performed with the 2D BEM method. And the noise test of scale down noise reducing device in anechoic chamber was performed for the verification of acoustic prediction technique and IL performance evaluation. As the results, the acoustic prediction technique for the development of noise reducing device was verified because the averaged IL difference between prediction and test is in 2dB(A). And the measured IL value of noise reducing device is less than 2dB(A), and additional IL with polyester absorption material is increased about 0.5dB(A).

  • PDF

Severity-based Software Quality Prediction using Class Imbalanced Data

  • Hong, Euy-Seok;Park, Mi-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.73-80
    • /
    • 2016
  • Most fault prediction models have class imbalance problems because training data usually contains much more non-fault class modules than fault class ones. This imbalanced distribution makes it difficult for the models to learn the minor class module data. Data imbalance is much higher when severity-based fault prediction is used. This is because high severity fault modules is a smaller subset of the fault modules. In this paper, we propose severity-based models to solve these problems using the three sampling methods, Resample, SpreadSubSample and SMOTE. Empirical results show that Resample method has typical over-fit problems, and SpreadSubSample method cannot enhance the prediction performance of the models. Unlike two methods, SMOTE method shows good performance in terms of AUC and FNR values. Especially J48 decision tree model using SMOTE outperforms other prediction models.

Statistical Prediction of False Alarm Rates in Automatic Vision Inspection System (자동결함 검출시스템에서 결함크기 측정오차로 인한 오검률의 통계적 예측)

  • Joo, Young-Bok;Huh, Kyung-Moo;Park, Kil-Houm
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.906-908
    • /
    • 2009
  • AVI (Automatic Vision Inspection) systems automatically detect defect features and measure their sizes via camera vision. It is important to predict the performance of an AVI to meet customer's specification in advance. Also the prediction can indicate the level of current performance of an AVI system. In this paper, we propose a statistical method for prediction of false alarm rate regarding inconsistency of defect size measurement process. For this purpose, only simple experiments are needed to measure the defect sizes for certain number of times. The statistical features from the experiment are utilized in the prediction process. Therefore, the proposed method is swift and easy to implement and use. The experiment shows a close prediction compared to manual inspection results.

Prediction model of service life for tunnel structures in carbonation environments by genetic programming

  • Gao, Wei;Chen, Dongliang
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.373-389
    • /
    • 2019
  • It is important to study the problem of durability for tunnel structures. As a main influence on the durability of tunnel structures, carbonation-induced corrosion is studied. For the complicated environment of tunnel structures, based on the data samples from real engineering examples, the intelligent method (genetic programming) is used to construct the service life prediction model of tunnel structures. Based on the model, the prediction of service life for tunnel structures in carbonation environments is studied. Using the data samples from some tunnel engineering examples in China under carbonation environment, the proposed method is verified. In addition, the performance of the proposed prediction model is compared with that of the artificial neural network method. Finally, the effect of two main controlling parameters, the population size and sample size, on the performance of the prediction model by genetic programming is analyzed in detail.

Crime amount prediction based on 2D convolution and long short-term memory neural network

  • Dong, Qifen;Ye, Ruihui;Li, Guojun
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.208-219
    • /
    • 2022
  • Crime amount prediction is crucial for optimizing the police patrols' arrangement in each region of a city. First, we analyzed spatiotemporal correlations of the crime data and the relationships between crime and related auxiliary data, including points-of-interest (POI), public service complaints, and demographics. Then, we proposed a crime amount prediction model based on 2D convolution and long short-term memory neural network (2DCONV-LSTM). The proposed model captures the spatiotemporal correlations in the crime data, and the crime-related auxiliary data are used to enhance the regional spatial features. Extensive experiments on real-world datasets are conducted. Results demonstrated that capturing both temporal and spatial correlations in crime data and using auxiliary data to extract regional spatial features improve the prediction performance. In the best case scenario, the proposed model reduces the prediction error by at least 17.8% and 8.2% compared with support vector regression (SVR) and LSTM, respectively. Moreover, excessive auxiliary data reduce model performance because of the presence of redundant information.

Enhanced Prediction for Low Complexity Near-lossless Compression (낮은 복잡도의 준무손실 압축을 위한 향상된 예측 기법)

  • Son, Ji Deok;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This paper proposes an enhance prediction for conventional near-lossless coder to effectively lower external memory bandwidth in image processing SoC. First, we utilize an already reconstructed green component as a base of predictor of the other color component because high correlation between RGB color components usually exists. Next, we can improve prediction performance by applying variable block size prediction. Lastly, we use minimum internal memory and improve a temporal prediction performance by using a template dictionary that is sampled in previous frame. Experimental results show that the proposed algorithm shows better performance than the previous works. Natural images have approximately 30% improvement in coding efficiency and CG images have 60% improvement on average.

Performance Improvement Algorithms for Prediction-based QoS Routing (예측 기반 QoS 라우팅 성능 향상 기법에 관한 연구)

  • Joo, Mi-Ri;Kim, Woo-Nyon;Cho, Kang-Hong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11B
    • /
    • pp.744-749
    • /
    • 2005
  • This paper proposes the prediction based QoS routing algorithm, PSS(Prediction Safety-Shortest) algorithm that minimizes network state information overhead and presumes more accurate knowledge of the present state of all the links within the network. We apply time series model to the available bandwidth prediction to overcome inaccurate information of the existing QoS routing algorithms. We have evaluated the performance of the proposed model and the existing algorithms on MCI networks, it thus appears that we have verified the performance of this algorithm.

Efficient Inter Prediction Mode Decision Method for Fast Motion Estimation in High Efficiency Video Coding

  • Lee, Alex;Jun, Dongsan;Kim, Jongho;Choi, Jin Soo;Kim, Jinwoong
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.528-536
    • /
    • 2014
  • High Efficiency Video Coding (HEVC) is the most recent video coding standard to achieve a higher coding performance than the previous H.264/AVC. In order to accomplish this improved coding performance, HEVC adopted several advanced coding tools; however, these cause heavy computational complexity. Similar to previous video coding standards, motion estimation (ME) of HEVC requires the most computational complexity; this is because ME is conducted for three inter prediction modes - namely, uniprediction in list 0, uniprediction in list 1, and biprediction. In this paper, we propose an efficient inter prediction mode (EIPM) decision method to reduce the complexity of ME. The proposed EIPM method computes the priority of all inter prediction modes and performs ME only on a selected inter prediction mode. Experimental results show that the proposed method reduces computational complexity arising from ME by up to 51.76% and achieves near similar coding performance compared to HEVC test model version 10.1.

Experimental investigation of creep and shrinkage of reinforced concrete with influence of reinforcement ratio

  • Sun, Guojun;Xue, Suduo;Qu, Xiushu;Zhao, Yifeng
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • Predictions about shrinkage and creep of concrete are very important for evaluating time-dependent effects on structural performance. Some prediction models and formulas of concrete shrinkage and creep have been proposed with diversity. However, the influence of reinforcement ratio on shrinkage and creep of concrete has been ignored in most prediction models and formulas. In this paper, the concrete shrinkage and creep with different ratios of reinforcement were studied. Firstly, the shrinkage performance was tested by the 10 reinforced concrete beams specimens with different reinforcement ratios for 200 days. Meanwhile, the creep performance was tested by the 5 reinforced concrete beams specimens with different ratios of reinforcement under sustained load for 200 days. Then, the test results were compared with the prediction models and formulas of CEB-FIP 90, ACI 209, GL 2000 and JTG D 62-2004. At last, based on ACI 209, an improved prediction models and formulas of concrete shrinkage and creep considering reinforcement ratio was derived. The results from improved prediction models and formulas of concrete shrinkage and creep are in good agreement with the experimental results.

A Stepwise Rating Prediction Method for Recommender Systems (추천 시스템을 위한 단계적 평가치 예측 방안)

  • Lee, Soojung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • Collaborative filtering based recommender systems are currently indispensable function of commercial systems in various fields, being a useful service by providing customized products that users will prefer. However, there is a high possibility that the prediction of preferrable products is inaccurate, when the user's rating data are insufficient. In order to overcome this drawback, this study suggests a stepwise method for prediction of product ratings. If the application conditions of the prediction method corresponding to each step are not satisfied, the method of the next step is applied. To evaluate the performance of the proposed method, experiments using a public dataset are conducted. As a result, our method significantly improves prediction and precision performance of collaborative filtering systems employing various conventional similarity measures and outperforms performance of the previous methods for solving rating data sparsity.