• Title/Summary/Keyword: Prediction Control

Search Result 2,231, Processing Time 0.024 seconds

Forecasting Load Balancing Method by Prediction Hot Spots in the Shared Web Caching System

  • Jung, Sung-C.;Chong, Kil-T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2137-2142
    • /
    • 2003
  • One of the important performance metrics of the World Wide Web is how fast and precise a request from users will be serviced successfully. Shared Web Caching (SWC) is one of the techniques to improve the performance of the network system. In Shared Web Caching Systems, the key issue is on deciding when and where an item is cached, and also how to transfer the correct and reliable information to the users quickly. Such SWC distributes the items to the proxies which have sufficient capacity such as the processing time and the cache sizes. In this study, the Hot Spot Prediction Algorithm (HSPA) has been suggested to improve the consistent hashing algorithm in the point of the load balancing, hit rate with a shorter response time. This method predicts the popular hot spots using a prediction model. The hot spots have been patched to the proper proxies according to the load-balancing algorithm. Also a simulator is developed to utilize the suggested algorithm using PERL language. The computer simulation result proves the performance of the suggested algorithm. The suggested algorithm is tested using the consistent hashing in the point of the load balancing and the hit rate.

  • PDF

FE-based Strip Mean Temperature Prediction On-Line Model in Hot Strip Finishing Mill by using Dimensional Analysis (차원해석을 통한 열간 사상압연중 온도해석모델 개발)

  • 이중형;곽우진;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.176-179
    • /
    • 2003
  • The mean temperature prediction of strip is very important in hot strip finishing mill because of affecting on product quality and shape. Also, temperature can be used by basic information in other on-line control models with affecting control accuracy in factory. So, FE based on-line temperature model was developed for predicting strip mean temperature accurately in various process conditions and factory environments. There are many variables in affecting strip mean temperature in on-line states of factory. But some problems are occurred in considering all variables for making temperature model because of the bad efficiency of regression or fitting analysis. In this report, we have adopted dimensional analysis for solving these problems. We have many variables with dimensions affecting strip temperature but we are able to make non-dimensional variables less than dimensional variables from the combination of dimensional variables caused by PI-Theorem in fluid mechanics. The developed models are divided by two parts. The one is interstand temperature prediction model. The other is roll gap temperature model.

  • PDF

A Study on the Influence of a Sewage Treatment Plant's Operational Parameters using the Multiple Regression Analysis Model

  • Lee, Seung-Pil;Min, Sang-Yun;Kim, Jin-Sik;Park, Jong-Un;Kim, Man-Soo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • In this study, the influence of the control and operational parameters within a sewage treatment plant were reviewed by performing multiple regression analysis on the effluent quality of the sewage treatment. The data used for this review are based on the actual data from a sewage treatment plant using the media process within the year 2012. The prediction models of chemical oxygen demand ($COD_{Mn}$) and total nitrogen (T-N) within the effluent of the 2nd settling tank based on the multiple regression analysis yielded the prediction accuracy measurements of 0.93 and 0.84, respectively; and it was concluded that the model was accurately predicting the variances of the actual observed values. If the data on the energy spent on each operating condition can be collected, then the operating parameter that conserves energy without violating the effluent quality standards of COD and T-N can be determined using the regression model and the standardized regression coefficients. These results can provide appropriate operation guidelines to conserve energy to the operators at sewage treatment plants that consume a lot of energy.

In-Process Prediction of the Surface Error Using an Identification of Cutting Depths in End Milling (엔드밀 가공중 절입깊이의 실시간 추정을 이용한 가공오차 예측)

  • 최종근;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.114-123
    • /
    • 1998
  • In the end milling process, the information of the surface errors plays an important role in adaptive control systems for precision machining. As the measuring accuracy of the surface errors directly matches the control's, it is an important factor for evaluating the performance of the system. In order to obtain the surface errors, the prediction using the cutting force, torque, motor power etc. is frequently practiced owing to the easiness in measurement. In the implementation of the prediction, the information on the cutting depths make it concrete and precise. Actually the axial depth of cut limits the range of the calculation. In general, it is not easy to know the cutting depths due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool, and machining error in the previous cutting. In addition to, even if cutting depths are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggests an algorithm estimating the cutting depths based on cutting force and makes it precise to predict the surface error. The proposed algorithm can be applied in more extensive cutting situations, such as presence of the tool wear, change of the work material hardness, etc.

  • PDF

Target Tracking Control of a Quadrotor UAV using Vision Sensor (비전 센서를 이용한 쿼드로터형 무인비행체의 목표 추적 제어)

  • Yoo, Min-Goo;Hong, Sung-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.118-128
    • /
    • 2012
  • The goal of this paper is to design the target tracking controller for a quadrotor micro UAV using a vision sensor. First of all, the mathematical model of the quadrotor was estimated through the Prediction Error Method(PEM) using experimental input/output flight data, and then the estimated model was validated via the comparison with new experimental flight data. Next, the target tracking controller was designed using LQR(Linear Quadratic Regulator) method based on the estimated model. The relative distance between an object and the quadrotor was obtained by a vision sensor, and the altitude was obtained by a ultra sonic sensor. Finally, the performance of the designed target tracking controller was evaluated through flight tests.

Improvement of Roll Profile Prediction Model in Hot Strip Rolling (열간압연 공정에서 롤 프로파일 예측모델 향상)

  • Chung, J.S.;You, J.;Park, H.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.250-253
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them.

Study on Prediction and Control of Wind-Induced Heel Motion of Cruise Ship (바람 하중에 의한 크루즈선의 횡경사 예측 및 제어에 관한 연구)

  • Kim, Jae-Han;Kim, Yonghwan;Kim, Yong-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.206-216
    • /
    • 2013
  • The present study considers the prediction of wind-induced heel of cruise ship and its stabilization. Wind load in ocean exerts on the surface of superstructure of cruise ship, which causes the heel moment on the ship. The calculation of wind load starts from choosing wind speed profile, so that the logarithmic wind profile model is applied in this study. Heel moment by wind load is calculated by adopting approximate formulation and applied to the ship motion analysis in time domain. Motion stabilizers, such as stabilizing fin and U-tube tank, are considered to reduce the heel effect as well as excessive roll motion. From this study, it is expected that the present method can be applied to the prediction and stabilization of the heel motion of cruise ships.

DLDW: Deep Learning and Dynamic Weighing-based Method for Predicting COVID-19 Cases in Saudi Arabia

  • Albeshri, Aiiad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.212-222
    • /
    • 2021
  • Multiple waves of COVID-19 highlighted one crucial aspect of this pandemic worldwide that factors affecting the spread of COVID-19 infection are evolving based on various regional and local practices and events. The introduction of vaccines since early 2021 is expected to significantly control and reduce the cases. However, virus mutations and its new variant has challenged these expectations. Several countries, which contained the COVID-19 pandemic successfully in the first wave, failed to repeat the same in the second and third waves. This work focuses on COVID-19 pandemic control and management in Saudi Arabia. This work aims to predict new cases using deep learning using various important factors. The proposed method is called Deep Learning and Dynamic Weighing-based (DLDW) COVID-19 cases prediction method. Special consideration has been given to the evolving factors that are responsible for recent surges in the pandemic. For this purpose, two weights are assigned to data instance which are based on feature importance and dynamic weight-based time. Older data is given fewer weights and vice-versa. Feature selection identifies the factors affecting the rate of new cases evolved over the period. The DLDW method produced 80.39% prediction accuracy, 6.54%, 9.15%, and 7.19% higher than the three other classifiers, Deep learning (DL), Random Forest (RF), and Gradient Boosting Machine (GBM). Further in Saudi Arabia, our study implicitly concluded that lockdowns, vaccination, and self-aware restricted mobility of residents are effective tools in controlling and managing the COVID-19 pandemic.

Long-Term Prediction of Prestress in Concrete Bridge by Nonlinear Regression Analysis Method (비선형 회귀분석기법을 이용한 콘크리트 교량 프리스트레스의 장기 예측)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.507-515
    • /
    • 2006
  • The purpose of the paper is to propose a method to give a more accurate prediction of prestress changes in prestressed concrete(PSC) bridges. The statistical approach of the method is using the measurement data of the structural system to develop a nonlinear regression analysis. Long-term prediction of prestress is achieved using nonlinear regression analysis. The proposed method is applied to the prediction of prestress of an actual prestressed concrete box girder bridge. The present study represents that confidence interval of long-term prediction becomes progressively narrower with the increase of in-situ measurement data. Therefore, the numerical results prove that a more realistic long-term prediction of prestress changes in PSC structures can be achieved by employing the proposed method. The prediction results can be efficiently used to evaluate prestress during the service life of structure so that the remaining prestress exceeds the control criteria.

Multi-modal Pedestrian Trajectory Prediction based on Pedestrian Intention for Intelligent Vehicle

  • Youguo He;Yizhi Sun;Yingfeng Cai;Chaochun Yuan;Jie Shen;Liwei Tian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1562-1582
    • /
    • 2024
  • The prediction of pedestrian trajectory is conducive to reducing traffic accidents and protecting pedestrian safety, which is crucial to the task of intelligent driving. The existing methods mainly use the past pedestrian trajectory to predict the future deterministic pedestrian trajectory, ignoring pedestrian intention and trajectory diversity. This paper proposes a multi-modal trajectory prediction model that introduces pedestrian intention. Unlike previous work, our model makes multi-modal goal-conditioned trajectory pedestrian prediction based on the past pedestrian trajectory and pedestrian intention. At the same time, we propose a novel Gate Recurrent Unit (GRU) to process intention information dynamically. Compared with traditional GRU, our GRU adds an intention unit and an intention gate, in which the intention unit is used to dynamically process pedestrian intention, and the intention gate is used to control the intensity of intention information. The experimental results on two first-person traffic datasets (JAAD and PIE) show that our model is superior to the most advanced methods (Improved by 30.4% on MSE0.5s and 9.8% on MSE1.5s for the PIE dataset; Improved by 15.8% on MSE0.5s and 13.5% on MSE1.5s for the JAAD dataset). Our multi-modal trajectory prediction model combines pedestrian intention that varies at each prediction time step and can more comprehensively consider the diversity of pedestrian trajectories. Our method, validated through experiments, proves to be highly effective in pedestrian trajectory prediction tasks, contributing to improving traffic safety and the reliability of intelligent driving systems.