• Title/Summary/Keyword: Predicting Patterns

Search Result 280, Processing Time 0.024 seconds

Multi-dimensional Analysis and Prediction Model for Tourist Satisfaction

  • Shrestha, Deepanjal;Wenan, Tan;Gaudel, Bijay;Rajkarnikar, Neesha;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.480-502
    • /
    • 2022
  • This work assesses the degree of satisfaction tourists receive as final recipients in a tourism destination based on the fact that satisfied tourists can make a significant contribution to the growth and continuous improvement of a tourism business. The work considers Pokhara, the tourism capital of Nepal as a prefecture of study. A stratified sampling methodology with open-ended survey questions is used as a primary source of data for a sample size of 1019 for both international and domestic tourists. The data collected through a survey is processed using a data mining tool to perform multi-dimensional analysis to discover information patterns and visualize clusters. Further, supervised machine learning algorithms, kNN, Decision tree, Support vector machine, Random forest, Neural network, Naive Bayes, and Gradient boost are used to develop models for training and prediction purposes for the survey data. To find the best model for prediction purposes, different performance matrices are used to evaluate a model for performance, accuracy, and robustness. The best model is used in constructing a learning-enabled model for predicting tourists as satisfied, neutral, and unsatisfied visitors. This work is very important for tourism business personnel, government agencies, and tourism stakeholders to find information on tourist satisfaction and factors that influence it. Though this work was carried out for Pokhara city of Nepal, the study is equally relevant to any other tourism destination of similar nature.

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.

Predicting Determinants of Seoul-Bike Data Using Optimized Gradient-Boost (최적화된 Gradient-Boost를 사용한 서울 자전거 데이터의 결정 요인 예측)

  • Kim, Chayoung;Kim, Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.861-866
    • /
    • 2022
  • Seoul introduced the shared bicycle system, "Seoul Public Bike" in 2015 to help reduce traffic volume and air pollution. Hence, to solve various problems according to the supply and demand of the shared bicycle system, "Seoul Public Bike," several studies are being conducted. Most of the research is a strategic "Bicycle Rearrangement" in regard to the imbalance between supply and demand. Moreover, most of these studies predict demand by grouping features such as weather or season. In previous studies, demand was predicted by time-series-analysis. However, recently, studies that predict demand using deep learning or machine learning are emerging. In this paper, we can show that demand prediction can be made a little better by discovering new features or ordering the importance of various features based on well-known feature-patterns. In this study, by ordering the selection of new features or the importance of the features, a better coefficient of determination can be obtained even if the well-known deep learning or machine learning or time-series-analysis is exploited as it is. Therefore, we could be a better one for demand prediction.

Cloud Removal Using Gaussian Process Regression for Optical Image Reconstruction

  • Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.327-341
    • /
    • 2022
  • Cloud removal is often required to construct time-series sets of optical images for environmental monitoring. In regression-based cloud removal, the selection of an appropriate regression model and the impact analysis of the input images significantly affect the prediction performance. This study evaluates the potential of Gaussian process (GP) regression for cloud removal and also analyzes the effects of cloud-free optical images and spectral bands on prediction performance. Unlike other machine learning-based regression models, GP regression provides uncertainty information and automatically optimizes hyperparameters. An experiment using Sentinel-2 multi-spectral images was conducted for cloud removal in the two agricultural regions. The prediction performance of GP regression was compared with that of random forest (RF) regression. Various combinations of input images and multi-spectral bands were considered for quantitative evaluations. The experimental results showed that using multi-temporal images with multi-spectral bands as inputs achieved the best prediction accuracy. Highly correlated adjacent multi-spectral bands and temporally correlated multi-temporal images resulted in an improved prediction accuracy. The prediction performance of GP regression was significantly improved in predicting the near-infrared band compared to that of RF regression. Estimating the distribution function of input data in GP regression could reflect the variations in the considered spectral band with a broader range. In particular, GP regression was superior to RF regression for reproducing structural patterns at both sites in terms of structural similarity. In addition, uncertainty information provided by GP regression showed a reasonable similarity to prediction errors for some sub-areas, indicating that uncertainty estimates may be used to measure the prediction result quality. These findings suggest that GP regression could be beneficial for cloud removal and optical image reconstruction. In addition, the impact analysis results of the input images provide guidelines for selecting optimal images for regression-based cloud removal.

A Study on the Maintenance Data Analysis of Vehicle Parts of Yongin Light Rail and Condition-Based Prediction Maintenance (용인경전철 차량부품 정비 데이터 분석 및 상태기반 예지 유지보수 방안 연구)

  • Lee, Kyeong Ho;Lee, Joong Yoon;Kim, Yeong Min
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • The Yongin Light Rail train was manufactured by Bombardier Transportation in Canada in 2008 and is a privately invested railway line that has been operating in Yongin-si, Gyeonggi-do, since 2013. When the frequency of train failure increases due to aging, and there is a delay in the delivery period of imported parts used in the Bombardier manufactured trains, timely vehicle maintenance may not be performed due to lack of parts. To solve this problem, it is necessary to build a 'vehicle parts maintenance demand forecasting system' that analyzes the accurate and actual maintenance demand annual based on the condition of vehicle parts. The full scope of analysis in this paper analyzes failure data from various angles after opening of Yongin light rail vehicle to analyze failure patterns for each part and identify replacement cycles according to possible failures and consumption of parts. Based on this study, it is expected that Yongin Light Rail's maintenance system will change from the existing time-based replacement (TBM) concept to the condition-based maintenance (CBM) concept. It is expected that this study will improve the efficiency of the Yongin Light Rail maintenance system and increase vehicle availability. This paper is a fundamental for establishing of a system for predicting the replacement timing of vehicle parts for Yongin Light Rail. It reports the results of data analysis on some vehicle parts.

A study of Battery User Pattern Change tracking method using Linear Regression and ARIMA Model (선형회귀 및 ARIMA 모델을 이용한 배터리 사용자 패턴 변화 추적 연구)

  • Park, Jong-Yong;Yoo, Min-Hyeok;Nho, Tae-Min;Shin, Dae-Kyeon;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.423-432
    • /
    • 2022
  • This paper addresses the safety concern that the SOH of batteries in electric vehicles decreases sharply when drivers change or their driving patterns change. Such a change can overload the battery, reduce the battery life, and induce safety issues. This paper aims to present the SOH as the changes on a dashboard of an electric vehicle in real-time in response to user pattern changes. As part of the training process I used battery data among the datasets provided by NASA, and built models incorporating linear regression and ARIMA, and predicted new battery data that contained user changes based on previously trained models. Therefore, as a result of the prediction, the linear regression is better at predicting some changes in SOH based on the user's pattern change if we have more battery datasets with a wide range of independent values. The ARIMA model can be used if we only have battery datasets with SOH data.

Deep Learning-Based Spatio-Temporal Earthquake Prediction (딥러닝 기반의 시공간 지진 예측)

  • Kounghoon Nam;Jong-Tae Kim;Seong-Cheol Park;Chang Ju Lee;Soo-Jin Kim;Chang Oh Choo;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Predicting earthquakes is difficult due to the complexity of the systems underlying tectonic phenomena and incomplete understanding of the interactions among tectonic settings, tectonic stress, and crustal components. The Korean Peninsula is located in a stable intraplate region with a low average seismicity of M 2.3. As public interest in the earthquake grows, we analyzed earthquakes on the Korean Peninsula by attempting to predict spatio-temporal earthquake patterns and magnitudes using Facebook's Prophet model based on deep learning, and here we discuss seismic distribution zones using DBSCAN, a cluster analysis method. The Prophet model predicts future earthquakes in Chungcheongbuk-do, Gyeonggi-do, Seoul, and Gyeongsangbuk-do.

Experimental and Numerical Study on the Dynamic Fracture Processes of PMMA Block by NRC Vapor Pressure Fracture Agent (NRC 증기압 암석 파쇄제에 의한 PMMA 블록의 동적 파괴 과정에 관한 실험 및 수치해석적 연구)

  • Gyeongjo Min
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.91-103
    • /
    • 2023
  • This study aims to investigate the dynamic fracture characteristics of rocks and rock-like materials subjected to the Nonex Rock Cracker (NRC), a vapor pressure crushing agent that produces vapor pressure by instantaneously vaporizing a liquid mixture crystallized through the thermite reaction. Furthermore, the study seeks to develop an analytical technique for predicting the fracture pattern. A dynamic fracture test was performed on a PMMA block, an artificial brittle material, using the NRC. High-speed cameras and dynamic pressure gauges were employed to capture the moment of vapor pressure generation and measure the vapor pressure-time history, respectively. The 2-dimensional Dynamic Fracture Process Analysis (2D DFPA) was used to simulate the fracture process caused by the vapor pressure, with the applied pressure determined based on the vapor pressure-time history. The proposed analytical method was used to examine various fracture patterns with respect to granite material and high-performance explosives.

AI-based smart water environment management service platform development (AI기반 스마트 수질환경관리 서비스 플랫폼 개발)

  • Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.56-63
    • /
    • 2022
  • Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.

Deep Prediction of Stock Prices with K-Means Clustered Data Augmentation (K-평균 군집화 데이터 증강을 통한 주가 심층 예측)

  • Kyounghoon Han;Huigyu Yang;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.67-74
    • /
    • 2023
  • Stock price prediction research in the financial sector aims to ensure trading stability and achieve profit realization. Conventional statistical prediction techniques are not reliable for actual trading decisions due to low prediction accuracy compared to randomly predicted results. Artificial intelligence models improve accuracy by learning data characteristics and fluctuation patterns to make predictions. However, predicting stock prices using long-term time series data remains a challenging problem. This paper proposes a stable and reliable stock price prediction method using K-means clustering-based data augmentation and normalization techniques and LSTM models specialized in time series learning. This enables obtaining more accurate and reliable prediction results and pursuing high profits, as well as contributing to market stability.