• Title/Summary/Keyword: Predator

Search Result 311, Processing Time 0.029 seconds

ANALYSIS OF A STAGE-STRUCTURED PREDATOR-PREY SYSTEM WITH IMPULSIVE PERTURBATIONS AND TIME DELAYS

  • Song, Xinyu;Li, Senlin;Li, An
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.71-82
    • /
    • 2009
  • In this paper, a stage-structured predator-prey system with impulsive perturbations and time delays is presented to investigate the ecological problem of how a pest population and natural enemy population can coexist. Sufficient conditions are obtained using a discrete dynamical system determined by a stroboscopic map, which guarantee that a 'predator-extinction' periodic solution is globally attractive. When the impulsive period is longer than some time threshold or the impulsive harvesting rate is below a control threshold, the system is permanent. Our results provide some reasonable suggestions for pest management.

A Stage-Structured Predator-Prey System with Time Delay and Beddington-DeAngelis Functional Response

  • Wang, Lingshu;Xu, Rui;Feng, Guanghui
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.605-618
    • /
    • 2009
  • A stage-structured predator-prey system with time delay and Beddington-DeAngelis functional response is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated. The existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results.

Global Periodic Solutions in a Delayed Predator-Prey System with Holling II Functional Response

  • Jiang, Zhichao;Wang, Hongtao;Wang, Hongmei
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.255-266
    • /
    • 2010
  • We consider a delayed predator-prey system with Holling II functional response. Firstly, the paper considers the stability and local Hopf bifurcation for a delayed prey-predator model using the basic theorem on zeros of general transcendental function, which was established by Cook etc.. Secondly, special attention is paid to the global existence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf bifurcation result due to Wu, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. Finally, several numerical simulations supporting the theoretical analysis are given.

Complex Dynamic Behaviors of an Impulsively Controlled Predator-prey System with Watt-type Functional Response

  • Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.831-844
    • /
    • 2016
  • In this paper, we consider a discrete predator-prey system with Watt-type functional response and impulsive controls. First, we find sufficient conditions for stability of a prey-free positive periodic solution of the system by using the Floquet theory and then prove the boundedness of the system. In addition, a condition for the permanence of the system is also obtained. Finally, we illustrate some numerical examples to substantiate our theoretical results, and display bifurcation diagrams and trajectories of some solutions of the system via numerical simulations, which show that impulsive controls can give rise to various kinds of dynamic behaviors.

Predation Efficiency of the Spider Tetragnatha squamata (Araneae: Tetragnathidae) to Tea Leafhopper Empoasca vitis(Insecta: Homoptera) (Tetragnatha squamata(거미 목: 갈거미 과)의 차말매미충, Empoasca vitis (곤충 강: 매미 목) 에대한 포식효과)

  • Heng-Mei Yan;Man-Yuan Liu;Joo-Pil Kim
    • Animal Systematics, Evolution and Diversity
    • /
    • v.14 no.2
    • /
    • pp.159-164
    • /
    • 1998
  • The spider, Tetragnatha squamata and its prey Empoasca vitis, the tea leafhopper, were investigated in laboratory on the prey-predator relationship. The predator spider showed a significant response to the increase of the prey. The predation effiency and the response of predator to its density were examined as well. The result of the experiments are give as questions.

  • PDF

DYNAMICS OF A ONE-PREY AND TWO-PREDATOR SYSTEM WITH TWO HOLLING TYPE FUNCTIONAL RESPONSES AND IMPULSIVE CONTROLS

  • Baek, Hunki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.151-167
    • /
    • 2012
  • In this paper, we investigate the dynamic behaviors of a one-prey and two-predator system with Holling-type II functional response and defensive ability by introducing a proportion that is periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for predators at different fixed time. We establish conditions for the local stability and global asymptotic stability of prey-free periodic solutions by using Floquet theory for the impulsive equation, small amplitude perturbation skills. Also, we prove that the system is uniformly bounded and is permanent under some conditions via comparison techniques. By displaying bifurcation diagrams, we show that the system has complex dynamical aspects.

LONG-TIME PROPERTIES OF PREY-PREDATOR SYSTEM WITH CROSS-DIFFUSION

  • Shim Seong-A
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.293-320
    • /
    • 2006
  • Using calculus inequalities and embedding theorems in $R^1$, we establish $W^1_2$-estimates for the solutions of prey-predator population model with cross-diffusion and self-diffusion terms. Two cases are considered; (i) $d_1\;=\;d_2,\;{\alpha}_{12}\;=\;{\alpha}_{21}\;=\;0$, and (ii) $0\;<\;{\alpha}_{21}\;<\;8_{\alpha}_{11},\;0\;<\;{\alpha}_{12}\;<\;8_{\alpha}_{22}$. It is proved that solutions are bounded uniformly pointwise, and that the uniform bounds remain independent of the growth of the diffusion coefficient in the system. Also, convergence results are obtained when $t\;{\to}\;{\infty}$ via suitable Liapunov functionals.

EXTINCTION AND PERMANENCE OF A KIND OF PEST-PREDATOR MODELS WITH IMPULSIVE EFFECT AND INFINITE DELAY

  • Song, Xinyu;Guo, Hongjian
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.327-342
    • /
    • 2007
  • In this paper, a kind of pest-predator model with impulsive effect and infinite delay is considered by the method of chain transform. By using Floquet's theorem, it is shown that there exists a globally asymptotically stable periodic pest eradication solution when the impulsive period is less than or equal to some critical value which is a directly proportional function with respect to the population of release. Furthermore, it is proved that the system is permanent if the impulsive period is larger than some critical value. Finally, the results of the corresponding systems are compared, those results obtained in this paper are confirmed by numerical simulation.

DYNAMICS OF A PREY-PREDATOR INTERACTION WITH HASSELL-VARLEY TYPE FUNCTIONAL RESPONSE AND HARVESTING OF PREY

  • BHATTACHARYYA, ANINDITA;MONDAL, ASHOK;PAL, A.K.;SINGH, NIKHITA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1199-1215
    • /
    • 2022
  • This article aims to study the dynamical behaviours of a two species model in which non-selective harvesting of a prey-predator system by using a reasonable catch-rate function instead of usual catch-per-unit-effort hypothesis is used. A system of two ordinary differential equations(ODE's) has been proposed and analyzed with the predator functional response to prey density is considered as Hassell-Varley type functional responses to study the dynamics of the system. Positivity and boundedness of the system are studied. We have discussed the existence of different equilibrium points and stability of the system at these equilibrium points. We also analysed the system undergoes a Hopf-bifurcation around interior equilibrium point for a various parametric values which has very significant ecological impacts in this work. Computer simulation are carried out to validate our analytical findings. The biological implications of analytical and numerical findings are discussed critically.

DIFFUSIVE AND STOCHASTIC ANALYSIS OF LOKTA-VOLTERRA MODEL WITH BIFURCATION

  • C.V. PAVAN KUMAR;G. RANJITH KUMAR;KALYAN DAS;K. SHIVA REDDY;MD. HAIDER ALI BISWAS
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.11-31
    • /
    • 2023
  • The paper presents a critical analysis of selected topics related to the modeling of interacting species in which prey has nonlinear reproduction, which is in competition with predator. The mathematical model's stochastic stability is investigated. The method of designing appropriate Lyapunov functions is used to identify permanence conditions among the parameters of the model and conditions for the structure to no longer be extinct. The system's two-dimensional diffusive stability is regarded and studied. The system experiences the process of saddle-node bifurcation by varying the death rate of predator parameter. Further effects of parameters that undergo inherent oscillations are numerically investigated, revealing that as the intensity of predation parameter b is increased, the device encounters non-periodic and damped oscillations.