• 제목/요약/키워드: Precursor release

검색결과 42건 처리시간 0.023초

Loss of cholinergic innervations in rat hippocampus by intracerebral injection of C-terminal fragment of amyloid precursor protein

  • Han, Chang-Hoon;Lee, Young Jae
    • 대한수의학회지
    • /
    • 제48권3호
    • /
    • pp.251-258
    • /
    • 2008
  • The neurotoxicity of C-terminal fragments of amyloid precusor protein (CT) is known to play some roles in Alzheimer's disease progression. In this study, we investigated the effects of the recombinant C-terminal 105 amino acid fragment of amyloid precusor protein (CT105) on cholinergic function using CT105-injected rat. To study the effects of CT105 on septohippocampal pathway, choline acetyltransferase (ChAT) positive neurons were examined in the medial septum and in the diagonal band after an injection of CT105 peptide into the lateral ventricle. Immunohistological analysis revealed that the number of ChAT-immunopositive cells decreased significantly in both medial septum and diagonal band. In addition, CT105 decreased ChAT-immunopositive cells in the hippocampal area, particulary in the dentate gyros. To study the effect of amyloid beta peptide ($A{\beta}$) and CT105 on the cholinergic system, each peptide was injected into the left lateral ventricle, and acetylcholine (ACh) levels were monitored in hippocampus. ACh level in the hippocampal area was reduced to 60% of control level in $A{\beta}$-treated group, and the level was reduced to 15% of control level in CT105-treated group, at one week after the injection. ACh level was further reduced to 35% of control in $A{\beta}$-treated group, whereas the level was slightly increased to 30% of control in CT105-treated group at 4 weeks after the injection. Taken together, the results in the present study suggest that CT105 impairs the septohippocampal pathway by reducing acetylcholine synthesis and release, which results in damage of learning and memory.

A Gas-Phase Investigation of Oxygen-Hydrogen Exchange Reaction of O(3P) + C2H5 → H(2S) + C2H4O

  • Jang, Su-Chan;Park, Min-Jin;Choi, Jong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.839-844
    • /
    • 2014
  • The gas-phase radical-radical reaction $O(^3P)$ + $C_2H_5$ (ethyl) ${\rightarrow}$ $H(^2S)$ + $CH_3CHO$(acetaldehyde) was investigated by applying a combination of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration and ab initio calculations. The two radical reactants $O(^3P)$ and $C_2H_5$ were respectively produced by photolysis of $NO_2$ and supersonic flash pyrolysis of the synthesized precursor azoethane. Doppler profile analysis of the nascent H-atom products in the Lyman-${\alpha}$ region revealed that the average translational energy of the products and the average fraction of the total available energy released as translational energy were $5.01{\pm}0.72kcalmol^{-1}$ and 6.1%, respectively. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title exchange reaction is a major channel and proceeds via an addition-elimination mechanism through the formation of a short-lived, dynamical addition complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed small kinetic energy release can be explained in terms of the loose transition state with a product-like geometry and a small reverse activation barrier along the reaction coordinate.

몰약(沒藥)이 자궁경부암세포(子宮經部癌細胞)(HeLa Cell)의 Apoptosis에 미치는 영향(影響) (Myrrha-induced Apoptosis in Human Cervical Carcinoma HeLa Cells)

  • 박종규;조옥현;김송백;조한백
    • 대한한방부인과학회지
    • /
    • 제19권1호
    • /
    • pp.97-110
    • /
    • 2006
  • Purpose : To address the ability of Myrrha (MY) to induce cell death, we investigated the effect of MY on apoptosis. In human cervical carcinoma HeLa cells, apoptosis occurred following MY exposure in a dose-dependent manner. Methods : We have tested several kinds of anti-oxidants to investigate the MY-induced apoptotic mechanism. Among the anti-oxidants, N-acetyl cysteine(NAC) or reduced glutathione (GSH) protects MY-induced apoptosis. NAC is an aminothiol and synthetic precursor of intracellular cysteine and GSH. To confirm the role of GSH in MY-induced apoptosis, methionine and cystathionine-glutathione extrusion inhibitors were treated in the presence of MY. Results : NAC, GSH, methionine or cystathionine led to protective effect against MY-induced apoptosis in HeLa cells. The GSH and GSH-associated reagents regulate MY-induced cytochrome c release and the resultant caspase-3 activation. Furthermore, the two specific inhibitors of carrier-mediated GSH extrusion, methionine and cystathionine demonstrate GSH extrusion occurs via a specific mechanism. While decreasing GSH extrusion and protecting against MY-induced apoptosis, methionine and cystathionine failed to exert anti-apoptotic activity in cells previously deprived of GSH. Conclusion : the target of the protection is indeed GSH extrusion. This shows that the protective effect is achieved by forcing GSH to stay within the cells during apoptogenic treatment. All this evidence indicates the extrusion of GSH precedes andis responsible for the apoptosis, probably by altering the intracellular redox state, thus giving a rationale for the development of redox-dependent apoptosis in MY-treated human cervical carcinoma HeLa cells.

  • PDF

Numerical simulation of localization of a sub-assembly with failed fuel pins in the prototype fast breeder reactor

  • Abhitab Bachchan;Puspendu Hazra;Nimala Sundaram;Subhadip Kirtan;Nakul Chaudhary;A. Riyas;K. Devan
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3648-3658
    • /
    • 2023
  • The early localization of a fuel subassembly with a failed (wet rupture) fuel pin is very important in reactors to limit the associated radiological and operational consequences. This requires a fast and reliable system for failure detection and their localization in the core. In the Prototype Fast Breeder Reactor, the system specially designed for this purpose is Failed Fuel Location Modules (FFLM) housed in the control plug region. It identifies a failed sub-assembly by detecting the presence of delayed neutrons in the sodium from a failed sub-assembly. During the commissioning phase of PFBR, it is mandatory to demonstrate the FFLM effectiveness. The paper highlights the engineering and physics design aspects of FFLM and the integrated simulation towards its function demonstration with a source assembly containing a perforated metallic fuel pin. This test pin mimics a MOX pin of 1 cm2 of geometrical defect area. At 10% power and 20% sodium flow rate, the counts rate in the BCCs of FFLM system range from 75 cps to 145 cps depending upon the position of DN source assembly. The model developed for the counts simulation is applicable to both metal and MOX pins with proper values of k-factor and escape coefficient.

혈관내피유사세포 채취의 원천으로 골막의 활용 (Use of Peristeum as a Source of Endothelial-like Cells)

  • 박봉욱;김신원;김욱규;하영술;김진현;김덕룡;성일용;조영철;손장호;김종렬;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제33권5호
    • /
    • pp.385-391
    • /
    • 2011
  • Purpose: The periosteum is a well-known source of osteogenic precursor cells for tissue-engineered bone formation. However, cultured endothelial or endothelial-like cells derived from periosteum have not yet been investigated. This study focused on endothelial-like cell culture from the periosteum. Methods: Periosteal tissues were harvested from the mandible during surgical extraction of lower impacted third molars. The tissues were treated with 0.075% type I collagenase in phosphate-buffered saline (PBS) for 1 hr at $37^{\circ}C$ to release cellular fractions. The collagenase was inactivated with an equal volume of DMEM/10% fetal bovine serum (FBS) and the infranatant was centrifuged for 10 min at 2,400 rpm. The cellular pellet was filtered through a $100{\mu}m$ nylon cell strainer, and the filtered cells were centrifuged for 10 min at 2,400 rpm. The resuspended cells were plated into T25 flasks and cultured in endothelial cell basal medium (EBM)-2. Results: Among the hematopoietic markers, CD146 was more highly expressed than CD31 and CD34. The periosteal-derived cells also expressed CD90 and CD166, mesenchymal stem cell markers. Considering that the expression of CD146 was constant and that the expression of CD90 was lower at passage 5, respectively, the CD146 positive cells in passage 5 were isolated using the magnetic cell sorting (MACS) system. These CD146 sorted, periosteal-derived cells formed tube-like structures on Matrigel. The uptake of acetylated, low-density lipoprotein, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-Ac-LDL) was also examined in these cells. Conclusion: These results suggest that the CD146-sorted positive cells can be referred to as periosteal-derived CD146 positive endothelial-like cells. In particular, when a co-culture system with endothelial and osteoblastic cells in a three-dimensional scaffold is used, the use of periosteum as a single cell source would be strongly beneficial for bone tissue engineering.

Radiolabeling of 11C-sertraline by fast and easy loop method with [11C]CH3OTf

  • Lee, Hak Jeong;Jeong, Jae Min;Lee, Sang-Yoon;Ido, Tatsuo
    • 대한방사성의약품학회지
    • /
    • 제3권1호
    • /
    • pp.32-37
    • /
    • 2017
  • Cis-(1S,4S)-4-(3,4-dichlorophenyl)-1,2,3,4-tertrahydro-N-methyl-1-naphthalenamine (sertraline) hydrochloride from among selective serotonin reuptake inhibitors (SSRIs) is a treatment of major depression. For the differential diagnosis by metabolizing serotonin in a patient with neurological disorders, the radiolabeled $^{11}C$-sertraline was developed for non-invasive positron emission tomography in living brain and use the evaluation of new drug for SSRIs. We release the results of a fast and easy radiolabeling method applied a one-step loop method with $[^{11}C]CH_3OTf$ for routine clinical applications of $^{11}C$-sertraline. 1 mg of a precursor for $^{11}C$-sertraline in 0.1 mL DMF and $5{\mu}L$ of 1N NaOH, were injected into the loop of semi-prep high-performance liquid chromatography (HPLC). $[^{11}C]CH_3OTf$ was passed through the loop at room temperature (RT). The $^{11}C$-sertraline was separated by the semi-preparative HPLC. $^{11}C$-sertraline was eluted at 28.0 min was collected and evaluated by analytical HPLC and mass spectrometer. The total radiolabeling efficiency of $^{11}C$-sertraline was $30.7{\pm}8.7%$. The specific activity was $64.8{\pm}51.4GBq/{\mu}mol$. The radiochemical and chemical purities were higher than 99%. The mass spectrum of the product showed m/z peaks at 307.1 (M+1), indicating the mass of sertraline. By the one-step loop method with $[^{11}C]CH_3OTf$, $^{11}C$-sertraline could be quickly and easily prepared for clinical application.

천잠 cecropin-A 유전자 클로닝 및 재조합 발현 (Cloning and functional expression of a cecropin-A gene from the Japanese oak silkworm, Antheraea yamamai)

  • 김성렬;최광호;김성완;구태원;황재삼
    • 한국잠사곤충학회지
    • /
    • 제52권1호
    • /
    • pp.45-51
    • /
    • 2014
  • 면역 유도된 천잠(Antheraea yamamai) 유충에서 cecropin-A 유전자를 분리하였고 이 유전자를 Ay-CecA로 명명하였다. 전체 Ay-CecA cDNA 크기는 419 bp로 64개의 아미노산 잔기를 인코딩하는 195 bp ORF로 구성되어 있다. 천잠 CecA 유전자는 22개 잔기의 signal peptide, 4개 잔기의 propeptide 및 항균활성을 갖는 37개 잔기로 구성된 성숙 단백질(mature protein) 영역으로 구성되고 예상 분자량은 4046.81 Da으로 산출되었다. 천잠 CecA의 아미노산 서열은 다른 나비목 곤충에서 분리된 cecropin와 매우 높은 상동성(62 ~ 78%)을 나타냈다. Ay-CecA 유전자의 C말단에 기존에 보고된 곤충의 cecropin에서와 동일하게 C말단 아미드화를 위한 glycine 잔기가 존재하고 있다. 이 펩타이드의 항균활성을 검정하기 위해서 대장균 발현 시스템을 이용하여 활성이 있는 재조합 Ay-CecA 발현에 성공하였다. 발현 기주인 대장균에 대한 재조합 CecA 독성 중화를 위해서 불용성 단백질인 ketosteroid isomerase(KSI) 유전자를 CecA 유전자와 융합하였다. 융합 CecA-KSI 단백질은 대부분 불용성 단백질로 발현되었다. 발현된 융합단백질은 Ni-NTA immobilized metal affinity chromatography(IMAC)에 의해서 정제하였으며 CNBr 반응을 통하여 재조합 CecA를 절단하여 용출하였다. 최종적으로 양이온 교환 chromatography 과정을 통하여 CecA를 순수 정제하였다. 정제된 재조합 Ay-CecA는 그람음성균인 E. cori ML 35, Klebsiella pneumonia 및 Pseudomonas aeruginosa에 대해 매우 높은 항균활성을 나타냈었다. 따라서 본 연구 결과, 높은 항균활성 지닌 CecA는 천잠의 면역 반응에서 중요한 역할을 담당할 것으로 사료된다.

Preparation of Alzheimers Animal Model and Brain Dysfunction Induced by Continuous $\beta$-Amyloid Protein Infusion

  • Akio Itoh;Kiyofumi Yamada;Kim, Hyoung-Chun;Toshitaka Nabeshima
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.47-57
    • /
    • 2001
  • Alzheimer's disease (AD) is the most common cause of dementia in the elderly, and its pathology is characterized by the presence of numerous numbers of senile plaques and neurofibrillary tangles. Several genetic and transgenic studies have indicated that excess amount of $\beta$-amyloid protein (A$\beta$) is produced by mutations of $\beta$TEX>$\beta$-amyloid precursor protein and causes learning impairment. Moreover, $A\beta$ has a toxic effect on cultured nerve cells. To prepare AD model animals, we have examined continuous (2 weeks) infusion of $A\beta$ into the cerebral ventricle of rats. Continuous infusion of $A\beta$ induces learning impairment in water maze and passive avoidance tasks, and decreases choline acetyltransferase activity in the frontal cortex and hippocampus. Immunohistochemical analysis revealed diffuse depositions of $A\beta$ in the cerebral cortex and hippocampus around the ventricle. Furthermore, the nicotine-evoked release of acetylcholine and dopamine in the frontal cortex/hippocampus and striatum, respectively, is decreased in the $A\beta$-infused group. Perfusion of nicotine (50 $\mu\textrm{M}$) reduced the amplitude of electrically evoked population spikes in the CA1 pyramidal cells of the control group, but not in those of the $A\beta$-infused group, suggesting the impairment of nicotinic signaling in the $A\beta$-infused group. In fact, Kd, but not Bmax, values for [$^3H$] cytisine binding in the hippocampus significantly increased in the $A\beta$-infused rats. suggesting the decrease in affinity of nicotinic acetylcholine receptors. Long-term potentiation (LTP) induced by tetanic stimulations in CA1 pyramidal cells, which is thought to be an essential mechanism underlying learning and memory, was readily observed in the control group, whereas it was impaired in the $A\beta$-infused group. Taken together, these results suggest that $A\beta$ infusion impairs the signal transduction mechanisms via nicotinic acetylcholine receptors. This dysfunction may be responsible, at least in part, for the impairment of LTP induction and may lead to learning and memory impairment. We also found the reduction of glutathione- and Mn-superoxide dismutase-like immunoreactivity in the brains of $A\beta$-infused rats. Administration of antioxidants or nootropics alleviated learning and memory impairment induced by $A\beta$ infusion. We believe that investigation of currently available transgenic and non-transgenic animal models for AD will help to clarify the pathogenic mechanisms and allow assessment of new therapeutic strategies.

  • PDF

H-스멕타이트의 광물학적 특성과 생성관계 (Mineralogical Properties and Paragenesis of H-smectite)

  • 노진환;홍진성
    • 한국광물학회지
    • /
    • 제23권4호
    • /
    • pp.377-393
    • /
    • 2010
  • 제3기 마이오세 화성쇄설성 퇴적층인 범곡리충군의 주요 구성 암층인 부석질 응회암의 흡착기능성 광물자원으로서의 자원잠재성을 평가하기 위하여 그 응용광물학적 특성 및 그 규제 요인에 대하여 해석하였다. 장기 지역 범곡리층군에서 주된 암상을 이루는 부석질 응회암은 속성변질되어 저품위 제올라이트 및 벤토나이트를 이룬다. 이들은 부석편의 존재로 인한 성분적 특수성에 기인하여 일부 광석들은 양이온치환 능력, 비표면적 및 산성의 pH 농도와 연관된 우수한 흡착기능성을 나타낸다. 이 흡착기능성 광물질에서 낮은 pH 농도를 유발하는 것은 주로 결정구조상 층간에 수소 이온을 갖는 H-스멕타이트의 존재에 의한 것으로 밝혀졌다. 이 H-스멕타이트는 층간 교환성 양이온으로서 수소 이온의 존재에 의해 결정구조상 불규칙성이 야기되어 엽편상의 결정 가장자리가 다소 말린 형태를 보이고, X-선회절 분석에서는 (001) 회절선을 비롯한 주요 기저 회절선들이 일반적인 Ca-유형의 스멕타이트에 비해 상대적으로 낮은 강도를 보이는 것이 특정이다, 이 H-스멕타이트의 원물질 해석과 광물 공생관계를 토대로 이 독특한 점토광물의 생성 모델을 제시하였다. 즉, 부석질 유리편이 속성과정 동안에 필연적으로 야기되는 수화 변질의 결과로 규산이 해리되면서 생성된 수소 이온에 의해 공극수의 pH가 감소되어 단백석이 생성됨으로써 스멕타이트의 생성을 조장한 것으로 여겨진다. 강한 산성을 유발하는 이같은 H-스멕타이트의 존재에 의해서 범곡리층군의 저품위 흡착기능성 광물자원의 산업적 효용도, 특히 산성백토나 상토 부문 등에서 긍정적으로 평가될 수 있을 것으로 여겨진다.

Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae

  • Ji, Seon Yeong;Cha, Hee-Jae;Molagoda, Ilandarage Menu Neelaka;Kim, Min Yeong;Kim, So Young;Hwangbo, Hyun;Lee, Hyesook;Kim, Gi-Young;Kim, Do-Hyung;Hyun, Jin Won;Kim, Heui-Soo;Kim, Suhkmann;Jin, Cheng-Yun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.685-696
    • /
    • 2021
  • In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.