• Title/Summary/Keyword: Precoder

Search Result 82, Processing Time 0.031 seconds

Bandwidth-Efficient Precoding Scheme for Downlink Smart Utility Networks

  • Kim, Byung Wook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.1012-1019
    • /
    • 2014
  • The emerging smart utility networks (SUN) provide two-way communications between smart meters and smart appliances for purpose of low power usage, low cost, and high reliability. This paper deals with a bandwidth-efficient communication method based on the hidden pilot-aided scheme using a precoder in downlink SUN suitable for high-rate multimedia applications. With the aid of the design of a precoder and a superimposed hidden pilot, it is possible to estimate the channel without loss of bandwidth. In the channel estimation procedure, the inevitable data interference, which degrades the performance of channel estimation, can be reduced by the precoder design with an iterative scheme. Computer simulations show that the proposed scheme outperforms the conventional method in terms of achievable data rate, especially when a large number of subcarriers are employed.

Precoded OFDMA with Superimposed Pilots

  • Kim, Sung-Hwan;Jung, Sung-Yoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1059-1066
    • /
    • 2009
  • In this paper, we propose the precoder with superimposed pilots for orthogonal frequency-division multiple access (OFDMA) systems in order to enhance the transmission efficiency of the system and reduce peak-to-average power ratio (PAPR) which is the problem in OFDMA uplink. In wireless communication systems, the way to improve transmission efficiency is 1) to reduce bit error rate (BER) or 2) to increase data rate. In the proposed scheme, we design the precoder and superimposed pilots in the transmitter and use them in the receiver for increasing data rate, caused by the saved transmission bandwidth thanks to the superimposed pilots. In addition, we improve BER performance with the help of the frequency diversity gain caused by precoding. Also using superimposed pilots, we enhance the PAPR performance by increasing the average output power of the signal.

Cooperative Limited Feedback Precoding in Interference-Limited MIMO Networks (간섭 제한적인 MIMO 환경에서의 협력적인 제한적 피드백 프리코딩)

  • Yoon, Jung-Min;Lee, Jong-Ho;Kwak, Young-Woo;Choi, Jeong-Sik;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.276-285
    • /
    • 2011
  • In this paper, we propose new cooperative precoder selection technique for interference limited MIMO networks. Our proposed method gives weighting to precoders in the codebook according to each precoder's performance priority. By applying our proposed method to precoder selection sequence, performance of entire system can be improved in terms of sumrate, stability, and feedback rate.

Joint optimization of beamforming and power allocation for DAJ-based untrusted relay networks

  • Yao, Rugui;Lu, Yanan;Mekkawy, Tamer;Xu, Fei;Zuo, Xiaoya
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.714-725
    • /
    • 2018
  • Destination-assisted jamming (DAJ) is usually used to protect confidential information against untrusted relays and eavesdroppers in wireless networks. In this paper, a DAJ-based untrusted relay network with multiple antennas installed is presented. To increase the secrecy, a joint optimization of beamforming and power allocation at the source and destination is studied. A matched-filter precoder is introduced to maximize the cooperative jamming signal by directing cooperative jamming signals toward untrusted relays. Then, based on generalized singular-value decomposition (GSVD), a novel transmitted precoder for confidential signals is devised to align the signal into the subspace corresponding to the confidential transmission channel. To decouple the precoder design and optimal power allocation, an iterative algorithm is proposed to jointly optimize the above parameters. Numerical results validate the effectiveness of the proposed scheme. Compared with other schemes, the proposed scheme shows significant improvement in terms of security performance.

Low-Complexity Block Diagonalization Precoder Hardware Implementation for MU-MIMO 4×4

  • Khai, Lam Duc
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In this paper, we present the block diagonalization (BD) algorithm for the multiple-user multiple input multiple output (MU-MIMO) $4{\times}4$ system using specific purpose processor (SPP) hardware. Our objective is to improve the single-user MIMO (SU-MIMO) system using the MU-MIMO technology, which is remarkably fast and allows more users to connect simultaneously. To that end, our MU-MIMO precoder uses the BD algorithm to ensure signal integrity when connecting multiple users; but remains accurate and stable. However, a precoder that uses the BD algorithm is computationally complex; therefore, we use an SPP with special functions designed to compute the BD algorithm. The implementation test results show that our SPP computes the BD algorithm faster than the software solution.

Equal Gain Block Decomposition Methods for Multiuser MIMO Networks

  • Hwang, Insoo;Kang, Inseok;Hwang, Intae;You, Cheolwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1156-1173
    • /
    • 2021
  • In this paper, we propose a new joint precoder and postcoder design strategy to support multiple streams per user in multiuser multiple-input multiple-output (MIMO) systems. We propose two step precoding strategies using equal channel gain decomposition and block diagonalization at the transmitter. With the proposed precoder, the multiuser MIMO channel can be decomposed into multiple parallel channels with equal channel gain per user. After applying receive postcoder which is generated and sent by the transmitter, we can use ML based decoder per stream to achieve full receive diversity. Achievable sum rate bound and diversity performance of the proposed algorithm are presented with feedback signaling design and quantitative complexity analysis. Simulation results show that the proposed algorithm asymptotically approaches to the sum rate capacity of the MIMO broadcast channel while maintaining full diversity order.

Joint Base Station and Relay Precoder Design with Relay Local Channel State Information for Multi-relay Aided Multi-user All-MIMO System (다중 릴레이, 다중 사용자 All-MIMO 시스템에서 릴레이 지역 채널 정보를 사용한 기지국 및 릴레이 전처리기 공동 설계 기법)

  • Cho, Young-Min;Jang, Seung-Jun;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.405-419
    • /
    • 2012
  • In this paper, we propose a joint base station(BS) and relay precoders design in multi-relay aided multi-user all-multiple-input multiple-output(MIMO) system. The design criterion is to minimize user sum mean square error(SMSE) with relay sum power constraint(RSPC) where only local channel state information(CSI)s are available at relays. Local CSI at a relay is defined as the CSI of the channel which the relay itself accesses, out of among all the 1st hop and the 2nd hop channel in the system. With BS precoder structure which is concatenated with block diagonalization(BD) precoder, each relay can determine its own precoder using only local CSI. Proposed scheme is based on sequential iteration of two stages; stage 1 determines BS precoder and relay precoders jointly with SMSE duality, and stage 2 determines user receivers. Proposed scheme can be demonstrated theoretically to be always converge. We verify that proposed scheme outperforms simple amplify-and-forward(SAF), MMSE relay, and proposed schemes in [1] in terms of both SMSE and sum-rate performances.

Feedback Scheme for STBC-Spatial Multiplexing OFDM System with outdated channel feedback (지연된 귀환 채널 정보를 가지는 STBC-공간다중화 OFDM 시스템을 위한 귀환 기법)

  • Lim Jong-Kyoung;Hwang Hyeon-Chyeol;Seo Myoung-Seok;Kwak Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.31-38
    • /
    • 2006
  • In this paper, we propose an efficient preceding scheme for STBC-Spatial Muiltiplexing OFDM systems. In MIMO systems, the precoder is designed on the assumption that feedback channel information is perfectly known to transmitter and receiver. However, feedback delay and link errors in real environment make the transmitter use the incorrect channel information and consequently cause the performance degradation. The proposed precoder is designed to compensate for the performance degradation by the diversity gain provided by STBC. At the transmitter, the precoder for each subcarrier is constructed by using the index of codebook, subcarrier correlation, and auto correlation of channel. From the simulation results, STBC-spatial multiplexing OFDM outperforms the preceded-spatial multiplexing OFDM at $SER=10^{-3}$ when the Doppler frequency is greater than 60Hz.

Transceiver Design Method for Finitely Large Numbers of Antenna Systems (유한 대용량 안테나 시스템에서 송수신기 설계 방법)

  • Shin, Joonwoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.280-285
    • /
    • 2015
  • We consider a linear transceiver design method for multi-user multiple-input multiple-output (MIMO) downlink channels where a base station (BS) equipped with a finitely large number of antennas. Although a matched-filter precoder is a capacity-achieving method in massive MIMO downlink systems, it cannot guarantee to achieve the multi-user MIMO capacity in a finitely large number of antennas due to inter-user interferences. In this paper, we propose a two-stage precoder design method that maximizes the sum-rate of cell-edge users when the BS equipped with a finitely large number of antennas. At the first stage, a matched-filter precoder is adopted to exploit both beamforming gain and the reduction of the dimension of effective channels. Then, we derive the second stage precoder that maximizes the sum-rate by minimizing the weighted mean square error (WMSE). From simulation and analysis, we verify the effectiveness of the proposed method.

Preceding Scheme for Dual Spatial Multiplexing Systems with Limited Feedback (제한된 피드백 정보를 이용하는 이중 공간 다중화 시스템의 Preceding 기법)

  • Lee, Myoung-Won;Mun, Cheol;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1224-1230
    • /
    • 2006
  • In this paper, for spatial multiplexing with limited feedback, a precoding scheme is proposed based on the joint use of minimal instantaneous feedback and long-term feedback of a small number of bits, wherein the long-term feedback is used to convey a selected preceding matrix within a precodercodebook consisting of a number of unitary matrices, and the active column vectors of the selected unitary matrix are conveyed to the transmitter using instantaneous feedback. Focusing on the case of dual multi-input multi-output(MIMO) systems, precoder codebook design for maximizing the average throughput of a spatial multiplexing system with a zero-forcing(ZF) receiver is proposed. It is shown that the proposed scheme provides a considerable throughput enhancement over multi-mode antenna selection and multi-mode basis selection only with the additional long-yterm feedback of a small number of bits. For example, the throughput increases by 11.5 % than antenna selection and 5.1% than basis selection, respectively, when SNR=20 dB.