• Title/Summary/Keyword: Preclinical testing

Search Result 14, Processing Time 0.017 seconds

Development of a Wide Dose-Rate Range Electron Beam Irradiation System for Pre-Clinical Studies and Multi-Purpose Applications Using a Research Linear Accelerator

  • Jang, Kyoung Won;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Jung Kee;Moon, Young Min;Kim, Jin Young;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.9-19
    • /
    • 2020
  • Purpose: This study aims to develop a multi-purpose electron beam irradiation device for preclinical research and material testing using the research electron linear accelerator installed at the Dongnam Institute of Radiological and Medical Sciences. Methods: The fabricated irradiation device comprises a dual scattering foil and collimator. The correct scattering foil thickness, in terms of the energy loss and beam profile uniformity, was determined using Monte Carlo calculations. The ion-chamber and radiochromic films were used to determine the reference dose-rate (Gy/s) and beam profiles as functions of the source to surface distance (SSD) and pulse frequency. Results: The dose-rates for the electron beams were evaluated for the range from 59.16 Gy/s to 5.22 cGy/s at SSDs of 40-120 cm, by controlling the pulse frequency. Furthermore, uniform dose distributions in the electron fields were achieved up to approximately 10 cm in diameter. An empirical formula for the systematic dose-rate calculation for the irradiation system was established using the measured data. Conclusions: A wide dose-rate range electron beam irradiation device was successfully developed in this study. The pre-clinical studies relating to FLASH radiotherapy to the conventional level were made available. Additionally, material studies were made available using a quantified irradiation system. Future studies are required to improve the energy, dose-rate, and field uniformity of the irradiation system.

Research about Hyperspectral Imaging System for Pre-Clinical testing of Small Animal (소형동물 전임상실험을 위한 하이퍼스펙트럼 영상장비 연구)

  • Lee, kyeong-Hee;Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2208-2213
    • /
    • 2007
  • In this study we have developed a hyperspectrum imaging system for highly sensitive and effective imaging analysis. An optical setup was designed using acoustic optical tunable filter (AOTF) for high sensitive hyperspectrum imaging. Light emitted by mercury lamp gets split in to diffracted and undiffracted beams while passing though AOTF. GFP transfected HEK-293 cell line was used as a model for in vitro imaging analysis. Cells were first, analyzed by fluorescence microscope followed by flow cytometric analysis. Flow cytometric analysis showed 66.31% transfection yield in GFP transfected HEK-293 cells. Various images of GFP transfected HEK-293 cell were grabbed by collecting the diffracted light using a CCD over a dynamic range of frequency of 129-171 MHz with an interval of 3 MHz. Subsequently, for in vivo image analysis of GFP transfected cells in mouse, a whole-body-imaging system was constructed. The blue light of 488 nm wavelength was obtained from a Xenon arc lamp using an appropriate filter and transmitted through an optical cable to a ring illuminator. To check the efficacy of the newly developed whole-body-imaging system, a comparative imaging analysis was performed on a normal mouse in presence and absence of Xenon arc irradiation. The developed hyperspectrum imaging analysis with AOTF showed the highest intensity of green fluorescent protein at 153 MHz of frequency and 494 nm of wavelength. However, the fluorescence intensity remained same as that of the background below 138 MHz (475 nm) and above 162 MHz (532 nm). The mouse images captured using the constructed whole-body-imaging system appeared monochromatic in absence of Xenon arc irradiation and blue when irradiated with Xenon arc lamp. Nevertheless, in either case mouse images appeared clearly.

Experience of Combined Liquid Based Cervical Cytology and High-Risk HPV mRNA for Cervical Cancer Screening in Thammasat University Hospital

  • Muangto, Teerapat;Chanthasenanont, Athita;Lertvutivivat, Supapen;Nanthakomon, Tongta;Pongrojpaw, Densak;Bhamarapravatana, Kornkarn;Suwannarurk, Komsun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4409-4413
    • /
    • 2016
  • Background: Cervical cancer is the second most common of malignancy found in Thai women. Human papillomavirus (HPV) infection is a major cause. The objective of the present study was to evaluate the prevalence of HPV infection and association with abnormal cervical cytology in Thai women. Materials and Methods: This study was conducted at the Gynecologic Clinic, Thammasat University, Pathum Thani, Thailand. A total of 2,144 cases who underwent annual cervical cancer screening by co-testing (liquid based cytology and HPV testing, DNA versus mRNA) during the priod from July 2013 to June 2016 were recruited in this study. Results: Prevalence of positive high risk (HR) HPV DNA and mRNA test were 19.7 and 8.4%, respectively with a statistically significant difference. Majority of cases of abnormal cytology in this study were atypical squamous cells of undetermined significance (ASC-US). In patients with ASC-US, positive HR HPV DNA was greater than in the mRNA group (10.1 and 4.5%, p<0.001). Nonetheless, there was no significant difference in participants with cervical intraepithelial neoplasia (CIN). HPV mRNA test had slightly lower sensitivity but higher negative predictive value (NPV) than the DNA test to detect abnormal cytology during cervical cancer screening (p<0.001). Both HPV test (DNA and mRNA) had equally efficacy to detect high grade precancerous lesion or higher (CIN 2+). Conclusions: Prevalence of HR HPV DNA and mRNA were 19.7 and 8.4 percent, respectively. NPV of HPV mRNA was higher than DNA test. Both tests had equal efficacy to detect CIN 2+ with sensitivity and specificity of 63% vs 55.7% and 83% vs 92%, respectively.

Cytotoxic Effect of Taxol on Malignant Bone Tumor Cell Lines (악성 골종양 세포주들에 대한 Taxol의 세포독성)

  • Shin, Duk-Seop;Kim, Se-Dong;Kim, Keon-Ho;Lee, Jong-Hyung;Kim, Seong-Yong;Kim, Jung-Hye
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.4 no.1
    • /
    • pp.13-21
    • /
    • 1998
  • Taxol, the extract from the Taxus brevifolia which is a Pacific yew tree has aroused the interest of the tumor investigators since the 1960s. As well, it is shown to have broad antitumor activity in preclinical experimental models. Its action mechanism is an anti-microtubule effect by duplication of tubulin. The most impressive antitumor activity of taxol has been observed in advanced ovarian cancer and metastatic breast cancer. The purpose of this study was to determine how taxol acts on malignant bone tumor cell lines, to compare its cytotoxic effect with those of other chemotherapeutic agents, and to ascertain the its combination effect with adriamycin. Cell lines used in this study were G-292(osteosarcoma, human), SaOS-2(osteosarcoma, primary, human), and HT-1080(fibrosarcoma, human). Methotrexate, adriamycin, cisplatinum, ifosfamide and taxol were used as testing chemotherapeutic agents and their maximum test concentration were $500{\mu}g/ml$, $200{\mu}g/ml$, $500{\mu}g/ml$, $1000{\mu}g/ml$, and $600{\mu}g/ml$, respectively. The media for cell culture was RPMI-1640 with 10% fetal bovine serum and gentamycin. The results were as follows. The $IC_{50}$ of methotrexate, ifosfamide, cisplatinum, adriamycin and Taxol in G-292 were $2.3{\times}10^{-1}{\mu}g/ml$, $8.0{\times}10^0{\mu}g/ml$, $3.5{\times}10^0{\mu}g/ml$, $9.8{\times}10^{-1}{\mu}g/ml$, $2.7{\times}10^{-2}{\mu}g/ml$ respectively, in SaOS-2 $3.5{\times}10^{-1}{\mu}g/ml$, $1.5{\times}10^1{\mu}g/ml$, $2.8{\times}10^0{\mu}g/ml$, $9.9{\times}10^{-2}{\mu}g/ml$, $1.0{\times}10^{-2}{\mu}g/ml$, respectively, in HT-1080 $4.2{\times}10^{-2}{\mu}g/ml$, $5.4{\times}10^1{\mu}g/ml$, $3.8{\times}10^0{\mu}g/ml$, $5.5{\times}10^{-3}{\mu}g/ml$, $1.1{\times}10^{-3}{\mu}g/ml$, respectively. In conclusion, taxol had very potent cytotoxic effect on the malignant bone tumor cell lines with adriamycin, and was more potent than methotrexate, cisplatinum and ifosfamide. There were synergistic antitumor effects on G-292 and SaOS-2 cell lines in combination test of taxol and adriamycin. From the above results, it would be estimated that taxol could be a new antitumor drug for the malignant bone tumors, providing measures against the side effects and followed by the clinical tests.

  • PDF