• Title/Summary/Keyword: Precision machine

Search Result 2,988, Processing Time 0.026 seconds

Performance assessment of an ultraprecision machine tool positioning system with a friction drive

  • Song Chang-Kyu;Shin Young-Jae;Lee Hu-sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.8-12
    • /
    • 2005
  • The positioning system for an ultra precision machine tool must be accurate to the order of a nanometer. Various feed drive devices have been proposed to achieve this resolution; currently, most attention is directed towards hydrostatic lead screws and friction drives. It has been reported that a positioning resolution accurate to an angstrom can be achieved using a twist-roller friction drive. Therefore, we manufactured an ultra precision positioning system driven by a twist-roller friction drive and assessed its performance when defining problems and finding solutions. Our study showed that the twist-roller friction drive is mechanically suitable for ultra precision positioning, but some considerations are required to obtain a higher resolution.

Simulator of Accuracy Prediction for Developing Machine Structures (기계장비의 구조 특성 예측 시뮬레이터)

  • Lee, Chan-Hong;Ha, Tae-Ho;Lee, Jae-Hak;Kim, Yang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-274
    • /
    • 2011
  • This paper presents current state of the prediction simulator of structural characteristics of machinery equipment accuracy. Developed accuracy prediction simulator proceeds and estimates the structural analysis between the designer and simulator through the internet for convenience of designer. 3D CAD model which is input to the accuracy prediction simulator would simplified by the process of removing the small hole, fillet and chamfer. And the structural surface joints would be presented as the spring elements and damping elements for the structural analysis. The structural analysis of machinery equipment joints, containing rotary motion unit, linear motion unit, mounting device and bolted joint, are presented using Finite Element Method and their experiment. Finally, a general method is presented to tune the static stiffness at a rotation joint considering the whole machinery equipment system by interactive use of Finite Element Method and static load experiment.

High Reliability Design for New Concept Machining Center (신개념 머시닝센터의 신뢰성 향상 설계기술)

  • Lee, Chan-Hong;Kim, Yang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.894-903
    • /
    • 2011
  • In this paper, the capability index is introduced in order to improve the reliability of new concept machine tools and the method to improve the machine accuracy from the analysis of cutting process, statistical methodology and influence factors are proposed. In addition, the rib structure of bed and column in machine tools is analyzed by using the thermal impact method in order to analogize the rib pattern which has the small thermal deformation under thermal boundary condition. In the analysis of column rib structure, thermal boundary condition is separated to heat conduction and heat transfer to appropriate real boundary condition. Finally, performance chart of bed and column rib structure is provided for designer to estimate each rib pattern and select rib structure appropriating to thermal condition.

Fabrication of a Resonator using suspended Multi-wall Carbon Nanotubes (다중벽 탄소나노튜브를 이용한 공진기 제작)

  • Lee J.H.;Seo H.W.;Song J.W.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.465-466
    • /
    • 2006
  • A single-wall carbon nanotube (SWCNT) has been studied as a material of Nano-Eletro-Mechanical-System (NEMS) device together with various nanowires. In order for oscillation of a multi-wall carbon nanotube (MWCNT) or a single-walled carbon nanotube (SWCNT) on plane surface, it needs suspension of a CNT across trench electrodes. So we propose fabrication method of a MWCNT resonator using dielectrophoresis and show successful results of suspeneded MWNT. Thin electrodes with large gaps could not suspend small diameter MWNT but thicker electrodes could. Thin MWNT could be suspended only when the electrode gap was reduced.

  • PDF

Development of the Straightness Compensation System for Ultra-Precision Machine Using DSP (DSP를 이용한 초정밀가공기용 진직도 보상시스템 개발)

  • 이대희;이종호;김호상;민흥기;김민기;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.283-286
    • /
    • 2002
  • This paper presents the straightness compensation system which is a device for improving the machining accuracy of ultra-precision machines by synchronizing the position of diamond tool tip with machine error motion. Sine it is actuated by piezoelectric actuator with highly nonlinear hysteresis characteristics, the feedback control schemes such as Proportional Integral(PI), are required and realized by measuring the displacements of diamond tool tip. for the better tracking performance, the controller was implemented using TMS320C32 32bit floating-point DSP which is fast so that the real-time control is possible. In addition, stand alone type DSP board was chosen fur the easy assembly into the ultra-precision machines. The experimental results show good command tracking performance and the motion error of the machine is satisfactorily compensated during the machining process.

  • PDF

High Precision Hybrid Milling Machine Using Dual-Stage (듀얼스테이지를 이용한 고정밀도의 하이브리드 밀링머신)

  • Chung, Byeong-Mook;Yeo, In-Joo;Ko, Tae-Jo;Lee, Cheon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.39-46
    • /
    • 2008
  • High precision machining technology has become one of the important parts in the development of a precision machine. Such a machine requires high speed on a large workspace as well as high precision positioning. For machining systems having a long stroke with ultra precision, a dual-stage system including a global stage (coarse stage) and a micro stage (fine stage) is designed in this paper. Though linear motors have a long stroke and high precision feed drivers, they have some limitations for submicron positioning. Piezo-actuators with high precision also have severe disadvantage for the travel range, and the stroke is limited to a few microns. In the milling experiments, the positional accuracy has been readily achieved within 0.2 micron over the typical 20 mm stroke, and the path error over 2 micron was reduced within 0.2 micron. Therefore, this technique can be applied to develop high precision positioning and machining in the micro manufacturing and machining system.

Design Alterations of a Pipe Cutting Machine for the Improved Precision Machining (가공정도 향상을 위한 Pipe Cutting Machine의 설계 개선)

  • Kil, Sa Geun;Ro, Seung Hoon;Shin, Ho Beom;Kim, Young Jo;Kim, Dong Wook;Noh, Ho Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.53-58
    • /
    • 2018
  • The modern industry requires the precision machining as well as the high productivity. The machine tool structure should be evaluated in aspects such as durability, static stability, precision rate and the dynamic stability which is one of the most critical characteristics in determining the magnitude of vibrations. In this study, the dynamic properties of a pipe cutting machine were investigated to analyze the structural vibrations of the machine, and further to improve the structural stability and precision machining. Frequency response test and computer simulation have been utilized for the analysis and the design alterations. And the result shows that proposed design alterations can reduce the vibrations of the machine substantially.