• 제목/요약/키워드: Precision cold-forging

검색결과 142건 처리시간 0.03초

카운터샤프트 기어의 스플라인 치형 정밀성형을 위한 열간단조 공정에 관한 연구 (A Study on Hot Precision Forging Processes for Spline Teethof a Counter Shaft Gear)

  • 김현필;김현수;김용조
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.6-11
    • /
    • 2012
  • A counter shaft gear is an important part in the transmission system of vehicle. Its shape is relatively complicated and should meets high strength. Traditionally the counter shaft gear has been manufactured as follows; a spline body is firstly machined for teeth and then attached to the main gear body by frictional welding, and finally is finished by grinding. Therefore it is necessary to develop a new manufacturing technology eliminating both frictional welding and grinding processes. In this study, a new hot forging process was proposed and designed so that the spline body with teeth and main gear body are formed as one body. Finite element simulations and experimental works were peformed for design of forging processes to get the quality final precision-forged product. Consequently the most suitable blocker process could be obtained.

  • PDF

유한요소해석을 이용한 전자식 주차브레이크용 헬리컬 기어의 금형 도입부 각도에 따른 냉간 전방압출 성형성 분석에 관한 연구 (Study on Cold Forward Extrusion Formality Analysis along with Tool Entrance Angle of Helical Gear for Electronic Parking Brake Using Finite Element Analysis)

  • 김병길;이현구;조재웅;정광영;전성식
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.977-982
    • /
    • 2015
  • This study uses finite element analysis to evaluate the forming load of tool entrance angle of the cold forward extrusion molding process of helical gear; this can replace the spur gear applied to the Electronic Parking Brake (EPB) system. A cold forging process is often used in the automobile industry as well as in various industrial machines due to its high efficiency. Finite element analysis is frequently used when interpreting results of the forging process. Formality was evaluated by calculating tooth profile filling rate of helical gear. Change in required forming load was investigated when the entrance angle of forward extrusion tool die was changed from $30^{\circ}$ to $60^{\circ}$, also by finite element analysis. We suggest suitable tool entrance angles.

열간 단조 공정의 금형 수명 평가 (Evaluation of die life during hot forging process)

  • 이현철;박태준;고대철;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

반용융 단조품의 제조 (Manufacturing of Product by Semi-Solid Forging)

  • 박형진;강충길;김병민;최재찬
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.45-51
    • /
    • 1999
  • The semi-solid forging is a new forging technology in which the billet is heated to the semi-solid state coexisting liquid and solid phase for making globular microstructure and subsequently formed. As the semi-solid forging is compared with conventional casting such as die casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. Simutaneously, its mechanical properties are improved by globular microstructure and the lower temperature of the slug causes the cycle time of manufacturing to be shortened and the die life to be lengthened. As it is compared with conventional cold and hot forging, it is possible to minimize the equipment of production owing to a lower forming load and reduce the number of process by a followed treatment for complex shaped product. Therefore it is needed to confirm the quality of a semi-solid forged product by defining its characteristics quantitatively under these advantages. This paper investigates the formability of a master cylinder by its forming variables. And the microstructural characteristics and mechanical property of it is also studied.

  • PDF