• 제목/요약/키워드: Precision Press

Search Result 506, Processing Time 0.027 seconds

Suppression of tension variations in hydro-pneumatic riser tensioner by using force compensation control

  • Kang, Hooi-Siang;Kim, Moo-Hyun;Bhat Aramanadka, Shankar S.;Kang, Heon-Yong;Lee, Kee-Quen
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.225-246
    • /
    • 2017
  • Excessive dynamic-tension variations on the top-tensioned risers (TTRs) deteriorate the structural integrity and cause potential safety hazards. This phenomenon has become more remarkable in the development of deep-water fields with harsher environmental loads. The conventional prediction method of tension variations in hydro-pneumatic tensioner (HPT) has the disadvantage to underestimate the magnitude of cyclic loads. The actual excessive dynamic tension variations are larger when considering the viscous frictional fluid effects. In this paper, a suppression method of tension variations in HPT is modeled by incorporating the magneto-rheological (MR) damper and linear-force actuator. The mathematical models of the combined HPT and MR damper are developed and a force-control scheme is introduced to compensate the excessive tension variations on the riser tensioner ring. Numerical simulations and analyses are conducted to evaluate the suppression of tension variations in HPT under both regular- and irregular-wave conditions for a drilling riser of a tensioned-leg platform (TLP). The results show that significant reduction of tension variations can be achieved by introducing the proposed system. This research has provided a theoretical foundation for the HPT tension control and related structural protection.

Structural performance of cold-formed steel composite beams

  • Dar, M. Adil;Subramanian, N.;Anbarasu, M.;Dar, A.R.;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.545-554
    • /
    • 2018
  • This study presents a novel method of improving the strength and stiffness of cold-formed steel (CFS) beams. Flexural members are primary members in most of the structures. Hence, there is an urgent need in the CFS industry to look beyond the conventional CFS beam sections and develop novel techniques to address the severe local buckling problems that exist in CFS flexural members. The primary objective of this study was to develop new CFS composite beam sections with improved structural performance and economy. This paper presents an experimental study conducted on different CFS composite beams with simply supported end conditions under four point loading. Material properties and geometric imperfections of the models were measured. The test strengths of the models are compared with the design strengths predicted by using Australian/New Zealand Standard for cold-formed steel structures. Furthermore, to ensure high precision testing, a special testing rig was also developed for testing of long span beams. The description of test models, testing rig features and test results are presented here. For better interpretation of results, a comparison of the test results with a hot rolled section is also presented. The test results have shown that the proposed CFS composite beams are promising both in terms of better structural performance as well as economy.

Fabrication of Metallic Sandwich Plates with Inner Dimpled Shell Structure and Static Bending Test (딤플형 내부구조 금속 샌드위치 판재의 제작 및 정적 굽힘 실험)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Lee Sang-Hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.653-661
    • /
    • 2006
  • Metallic sandwich plates with various inner cores have important new features with not only ultra-light material characteristics and load bearing function but also multifunctional characteristics. Because of production possibility on the large scale and a good geometric precision, sandwich plates with inner dimpled shell structure from a single material have advantages as compared with other solid sandwich plates. Inner dimpled shell structures can be fabricated with press or roll forming process, and then bonded with two face sheets by multi-point resistance welding or adhesive bonding. Elasto-plastic bending behavior of sandwich plates have been predicted analytically and measured. The measurements have shown that elastic perfectly plastic approximation can be conveniently employed with less than 10% error in elastic stiffness, collapse load, and energy absorption. The dominant collapse modes are face buckling and bonding failure after yielding. Sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

Structural damage identification based on modified Cuckoo Search algorithm

  • Xu, H.J.;Liu, J.K.;Lv, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.163-179
    • /
    • 2016
  • The Cuckoo search (CS) algorithm is a simple and efficient global optimization algorithm and it has been applied to figure out large range of real-world optimization problem. In this paper, a new formula is introduced to the discovering probability process to improve the convergence rate and the Tournament Selection Strategy is adopted to enhance global search ability of the certain algorithm. Then an approach for structural damage identification based on modified Cuckoo search (MCS) is presented. Meanwhile, we take frequency residual error and the modal assurance criterion (MAC) as indexes of damage detection in view of the crack damage, and the MCS algorithm is utilized to identifying the structural damage. A simply supported beam and a 31-bar truss are studied as numerical example to illustrate the correctness and efficiency of the propose method. Besides, a laboratory work is also conducted to further verification. Studies show that, the proposed method can judge the damage location and degree of structures more accurately than its counterpart even under measurement noise, which demonstrates the MCS algorithm has a higher damage diagnosis precision.

Behavior modeling and damage quantification of confined concrete under cyclic loading

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.625-635
    • /
    • 2017
  • Sets of nonlinear formulations together with an energy-based damage index (DI) are proposed to model the behavior and quantify the damage of the confined and unconfined concretes under monotonic and cyclic loading. The proposed formulations and DI can be employed in numerical simulations to determine the stresses and the damages to the fibers or the layers within the sections of reinforced concrete (RC) components. To verify the proposed formulations, an adaptive finite element computer program was generated to simulate the RC structures subjected to monotonic and cyclic loading. By comparing the simulated and the experimental test results, on both the full-scale structural members and concrete cylindrical samples, the proposed uniaxial behavior modeling formulations for confined and unconfined concretes under monotonic and cyclic loading, based on an iterative process, were accordingly adjusted, and then validated. The proposed formulations have strong mathematical structures and can readily be adapted to achieve a higher degree of precision by improving the relevant coefficients based on more precise tests. To apply the proposed DI, the stress-strain data of concrete elements is required. It can easily be calculated by using the proposed nonlinear constitutive laws for confined and unconfined concretes in this paper.

Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions

  • Ebrahimi, Farzad;Salari, Erfan
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.243-257
    • /
    • 2017
  • In this paper, free vibration of functionally graded (FG) size-dependent nanobeams is studied within the framework of nonlocal Timoshenko beam model. It is assumed that material properties of the FG nanobeam, vary continuously through the thickness according to a power-law form. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The non-classical governing differential equations of motion are derived through Hamilton's principle and they are solved utilizing both Navier-based analytical method and an efficient and semi-analytical technique called differential transformation method (DTM). Various types of boundary conditions such as simply-supported, clamped-clamped, clamped-simply and clamped-free are assumed for edge supports. The good agreement between the presented DTM and analytical results of this article and those available in the literature validated the presented approach. It is demonstrated that the DTM has high precision and computational efficiency in the vibration analysis of FG nanobeams. The obtained results show the significance of the material graduation, nonlocal effect, slenderness ratio and boundary conditions on the vibration characteristics of FG nanobeams.

An approach of evaluation and mechanism study on the high and steep rock slope in water conservancy project

  • Yang, Meng;Su, Huaizhi;Wen, Zhiping
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.527-535
    • /
    • 2017
  • In this study, an aging deformation statistical model for a unique high and steep rock slope was proposed, and the aging characteristic of the slope deformation was better reflected. The slope displacement was affected by multiple-environmental factors in multiple scales and displayed the same tendency with a rising water level. The statistical model of the high and steep rock including non-aging factors was set up based on previous analyses and the study of the deformation and residual tendency. The rule and importance of the water level factor as a non-aging unit was analyzed. A partitioned statistical model and mutation model were established for the comprehensive cumulative displacement velocity with the monitoring study under multiple factors and multiple parameters. A spatial model was also developed to reflect and predict the whole and sectional deformation character by combining aging, deformation and space coordinates. A neural network model was built to fit and predict the deformation with a high degree of precision by mastering its feature of complexity and randomness. A three-dimensional finite element model of the slope was applied to approach the structure character using numerical simulations. Further, a three-dimensional finite element model of the slope and dam was developed, and the whole deformation state was analyzed. This study is expected to provide a powerful and systematic method to analyze very high, important and dangerous slopes.

Efflorescence assessment using hyperspectral imaging for concrete structures

  • Kim, Byunghyun;Cho, Soojin
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.209-221
    • /
    • 2018
  • Efflorescence is a phenomenon primarily caused by a carbonation process in concrete structures. Efflorescence can cause concrete degradation in the long term; therefore, it must be accurately assessed by proper inspection. Currently, the assessment is performed on the basis of visual inspection or image-based inspection, which may result in the subjective assessment by the inspectors. In this paper, a novel approach is proposed for the objective and quantitative assessment of concrete efflorescence using hyperspectral imaging (HSI). HSI acquires the full electromagnetic spectrum of light reflected from a material, which enables the identification of materials in the image on the basis of spectrum. Spectral angle mapper (SAM) that calculates the similarity of a test spectrum in the hyperspectral image to a reference spectrum is used to assess efflorescence, and the reference spectral profiles of efflorescence are obtained from theUSGS spectral library. Field tests were carried out in a real building and a bridge. For each experiment, efflorescence assessed by the proposed approach was compared with that assessed by image-based approach mimicking conventional visual inspection. Performance measures such as accuracy, precision, and recall were calculated to check the performance of the proposed approach. Performance-related issues are discussed for further enhancement of the proposed approach.

A study on manufacturing of laser welded tube from 60kgf/$mm^2$Grade Steel Sheet for one-body forming (60kgf/$mm^2$급 일체화 성형용 레이저 용접 튜브 제조에 관한 연구)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jung-Oh;Kang, Hee-Sin;Lee, Mun-Yong;Jung, Byung-Hoon
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.18-20
    • /
    • 2003
  • Optimal processing and system to produce the laser welded tube for one body formed bumper beam are studied. The calculated size of tube is a thickness of 1.4mm, diameter of 105.4mm and length of 2000mm. The tube is shaped from cool rolled high strength steel sheet(tensile strength: 60kgf/$\textrm{mm}^2$ grade). Two roll bending method is the optimal tube shaping process compared to UO-bending, bending on press brake, multi-step continuous roll forming and 3 roll bending methods. Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are also studied. The longitudinal butt-joint is welded by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. The constructed $CO_2$ laser tube welding system can be used for the precision seam tracking and the real-time monitoring of weld quality. Finally, the obtained laser welded tube can be used for one-body formed automobile bumper beam.

  • PDF