• Title/Summary/Keyword: Precision Position

Search Result 1,618, Processing Time 0.026 seconds

Development of the Starting Algorithm of a Brushless DC Motor Using the Inductance Variation (인덕턴스의 변화를 이용한 브러시리스 DC 모터의 초기 구동 알고리즘 개발 및 구현)

  • Park, Jae-Hyun;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.157-164
    • /
    • 2000
  • This paper presents a method to detect a rotor position and to drive a BLDC motor from standstill to medium speed without any position sensor comparing the current responses due to the inductance variation in the rotor position. A rotor position at a standstill is identified by the current responses of six pulses injected to each phase of a motor. Once the motor stars up pulse train that is composed of long and short pulses is injected to the phase corresponding to produce the maximum torque and the next phase continuously. it provides not only the torque but also the information of the next commutation time effectively when the response of long and short pulses crosses each other after the same time delay. This method which is verified experimentally using a DSP can drive a BLDC motor to the medium speed smoothly without any rattling and time delay compared with the conventional sensorless algorithm.

  • PDF

High Response and Precision Control of Electronic Throttle Controller Module without Hall Position Sensor for Detecting Rotor Position of BLDCM

  • Lee, Sang-Hun;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This paper describes the characteristics of Electronic Throttle Controller (ETC) module in BLDC motor without the hall sensor for detecting a rotor position. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analogue voltage output on the throttle valve instead of BLDC motor for detecting the rotor position. So the additional commutation information is necessarily needed to control the ETC module. For this, the estimation method is applied. In order to improve and obtain the high resolution for the position control, it is generally needed to change the gear ratio of the module or the electrical switching method etc. In this paper, the 3-phase switching between successive commutations is adapted instead of the 2-phase switching that is conventionally used. In addition, the position control with a variable PI gain is applied to improve a dynamic response during a transient period and reduce vibration at a stop in case of matching position reference. The mentioned method can be used to estimate the commutation state and operate the high-precision position control for the ETC module and the high response characteristics. The validity of the proposed method is examined through the experimental results.

Precise Position Control of Piezoelectric Actuators without Nonlinear Hysteresis Model (비선형 히스테레시스 모델을 채용하지 않는 압전구동기의 정밀위치제어)

  • 송재욱;송하성;김호상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.189-193
    • /
    • 1996
  • Piezoelectric actuator is widely used in precision positioning applications due to its excellent positioning resolution. However, serious hysteresis nonlinearity of the actuator deteriorates its open loop positioning capability. Generally, a nonlinear hysteresis model is used in feedforward loop to improve positioning accuracy. In this study, however, a simple lead compensator is proposed as a substitution for a complex nonlinear hysteresis model and tested through experiments for precision position control.

  • PDF

Characteristic Analysis of Voice Coil Motor with Position Resolution of High Precision (고정밀 위치 분해능을 갖는 보이스 코일 모터의 특성 해석)

  • Lee, Hong-Kyo;Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.43-45
    • /
    • 2005
  • A High precision position control technique is used in many kind of industry areas. Especially this is to be one of the important parts in the development of precision machines. To get high precision and long range, dual servo voice coil motor(VCM) has been designed and implemented. In this paper, as a simulation and experimental result, the developed dual servo VCM shows the applicable possibility for precision machine system.

  • PDF

Development of a Position Correction System of Industrial Robot for Door Chassis Assembly Task (도어 장착을 위한 산업용 로보트의 위치 보정 시스템 개발)

  • 변성동;김미경;강희준;김상명
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.504-509
    • /
    • 1995
  • In this paper, we developed a position correction system of industrial robot for door-chassis assembly task. With the aid of a dedicated vision system, industrial robot accomplished visually acceptable door-chassis's assembly task. The alogorithm of the position detection of notch and 2 dimesional position correction algorithm are noteworthy. The obtained algorithms were satisfatorily implemented for a real door-chassis model.

  • PDF

Development of the Small-displacement-movement of a Pneumatic piston and the Hybrid Control Algorithm for Precision Position Control (정밀 위치제어를 위한 공압 피스톤의 미소변위 이송방법 및 혼합 제어 알고리즘 개발)

  • Roh, Chul-Ha;Kim, Yeung-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.40-45
    • /
    • 2001
  • This paper proposes a methodology for the small-displacement-movement of a piston and develops a hybrid control algorithm for the precision position control of a pneumatic rodless cylinder. The pneumatic system uses the voltage-proportional solenoid valves to minimum valve switching since the on/off type valves are create diffculties for accurate position control and induce a lot of valve switching. For the accurate position control a methodology for the small-displacement-movement of the piston is developed and identified experimentally. The main consideration on the development of the hybrid control law is to eliminate a stick-slip phenomenon in the pneumatic control system. This paper addresses these critical issues and presents experimental results for the pneumatic control system.

  • PDF

Detection of Absolute Position for Magneto-Optical Encoder Using Linear Table Compensation (선형 테이블 보상법을 이용한 마그네틱-옵티컬 엔코더의 절대 위치 검출에 관한 연구)

  • Kim, Seul Ki;Kim, Hyeong Jun;Lee, Suk;Park, Sung Hyun;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.1007-1013
    • /
    • 2016
  • This paper presents the development of a magneto-optical encoder for higher precision and smaller size. In general, optical encoders can have very high precision based on the position information of the slate, while their sizes tend to be larger due to the presence of complex and large components, such as an optical module. In contrast, magnetic encoders have exactly the opposite characteristics, i.e., small size and low precision. In order to achieve encoder features encompassing the advantages of both optical and magnetic encoders, i.e., high precision and small size, we designed a magneto-optical encoder and developed a method to detect absolute position, by compensating for the error of the hall sensor using the linear table compensation method. The performance of the magneto-optical encoder was evaluated through an experimental testbed.