• Title/Summary/Keyword: Precision Navigation

Search Result 422, Processing Time 0.025 seconds

Age of Face Classification based on Gabor Feature and Fuzzy Support Vector Machines (Gabor 특징과 FSVM 기반의 연령별 얼굴 분류)

  • Lee, Hyun-Jik;Kim, Yoon-Ho;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.151-157
    • /
    • 2012
  • Recently, owing to the technology advances in computer science and image processing, age of face classification have become prevalent topics. It is difficult to estimate age of facial shape with statistical figures because facial shape of the person should change due to not only biological gene but also personal habits. In this paper, we proposed a robust age of face classification method by using Gabor feature and fuzzy support vector machine(SVM). Gabor wavelet function is used for extracting facial feature vector and in order to solve the intrinsic age ambiguity problem, a fuzzy support vector machine(FSVM) is introduced. By utilizing the FSVM age membership functions is defined. Some experiments have conducted to testify the proposed approach and experimental results showed that the proposed method can achieve better age of face classification precision.

Real Time On-board Orbit Determination Performance Analysis of Low Earth Orbit Satellites (저궤도 위성의 실시간 On-board 궤도 결정 성능 분석)

  • Kim, Eun-Hyouek;Koh, Dong-Wook;Chung, Young-Suk;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • In this paper, a real time on-board orbit determination method using the extended kalman filter is suggested and its performance is analyzed in the environment of the orbit. Considering the limited on-board resources, the $J_2$ orbit propagate model and the GPS navigation solution are used for on-board orbit determination. The analysis result of the on-board orbit determination method implemented in DubaiSat-2 showed that position and velocity error are improved from 70.26 m to 26.25 m and from 3.6 m/s to 0.044 m/s, respectively when abnormal excursion errors is removed in the GPS navigation solution.

Ocean Wave Forecasting and Hindercasting Method to Support for Navigational Safety of Ship (선박의 항행안전지원을 위한 파랑추산에 관한 연구)

  • Shin, Seung-Ho;Hashimoto, Noriaki
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.111-119
    • /
    • 2003
  • In order to improve navigational safety of ships, an ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface wind first and then carried out ocean wave hindercasting simulations according to the routes the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed iou pressure system Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, wave period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

Research on MEMS for Motion Measurement of Solar Energy Platform at Sea (해상 태양광 부유체의 거동측정을 위한 MEMS 연구)

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.328-330
    • /
    • 2018
  • A floating body with a device that converts solar energy into electrical energy is moved by waves. To evaluate the safety of a floating body, measurement and interpretation of the float motion is required, which is generally based on 6 degrees of freedom motion. The 6 degree of freedom motion can be measured using MEMS (Micro-Electro Mechanical System), which features low power, small size and low cost. The key issue is, meanwhile, the low precision of the MEMS. In this study, the safety evaluation technique by analyzing the behavior of floating body using MEMS was examined. As a result of the study, it was found that the marine floating body can be modeled through the inertial measurement platform using the 3-axis accelerometer and the 3-axis gyroscope, and the safety of the float can be evaluated through this model.

  • PDF

Ocean wave forecasting and hindercasting method to support for navigational safety of ship (선박의 항행안전지원을 위한 파낭추산에 관한 연구)

  • 신승호;교본전명
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.147-156
    • /
    • 2003
  • In order to improve navigational safety of ships, on ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface winds first and then carried out ocean wave hindercasting simulations according to the routes of the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed low pressure system in Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, was period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

  • PDF

Precise Orbit Determination of GPS using Bernese GPS Software

  • Baek, Jeong-Ho;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.267-270
    • /
    • 2006
  • The International GNSS Service (IGS) has managed the global GNSS network and provided the highest quality GNSS data and products, which are GPS ephemerides, clock information and Earth orientation parameter, as the standard for GNSS. An important part of its works is to provide the precise orbits of GPS satellites. GPS satellites send their orbit information (broadcast ephemerides) to users and their accuracies are approximately 1.6 meters level, but those accuracies are not sufficient for the high precise applications which require millimeters precision. The current accuracies of the IGS final orbits are within 5 centimeters level and they are used for Earth science, meteorology, space science, and they are made by the IGS analysis centers and combined by the IGS analysis center coordinator. The techniques making the products are very difficult and require the high technology. The Korea Astronomy and Space Science Institute (KASI) studies to make the IGS products. In this study, we developed our own processing strategy and made GPS ephemerides using Bernese GPS software Ver. 5.0. We used the broadcast ephemerides as the initial orbits and processed the globally distributed 150 IGS stations. The result shows about 6 to 8 centimeters in root-mean-squares related to IGS final orbits in each day during a week. We expect that this study can contribute to secure our own high technology.

  • PDF

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.

Wireless TDD Time Synchronization Technique Considering the Propagation Delay Between Mobile Vehicles (이동체간 전파지연을 고려한 무선 TDD 시각 동기화 기법)

  • Boo, Jung-il;Ha, Jeong-wan;Kim, Kang-san;Kim, Bokki
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.392-399
    • /
    • 2019
  • In this paper, we have studied wireless time division duplex(TDD) time synchronization technique considering the propagation delay between mobile vehicles. The existing IEEE 1588 precision time protocol(IEEE 1588 PTP) algorithm was applied and the time synchronization between the two nodes was achieved through the propagation delay and clock offset time correction calculated between master slave nodes during wireless TDD communication. The time synchronization process and procedure of IEEE 1588 PTP algorithm were optimized, thereby reducing the propagation delay error sensitivity for real-time moving vehicles. The sync flag signal generated through the time correction has a time synchronization accuracy of max +252.5 ns within 1-symbol(1.74 M symbol/sec, ${\pm}287.35ns$) through test and measurement, and it was confirmed that the time synchronization between master slave nodes can be achieved through sync flag signal generated during GPS disturbance.

Enhancement of UAV-based Spatial Positioning Using the Triangular Center Method with Multiple GPS

  • Joo, Yongjin;Ahn, Yushin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.379-388
    • /
    • 2019
  • Recently, a technique for acquiring spatial information data using UAV (Unmanned Aerial Vehicle) has been greatly developed. It is a very crucial issue of the GIS (Geographic Information System) mapping system that passes way point in the unmanned airframe and finally measures the accurate image and stable localization to the desired destination. Though positioning using DGPS (Differential Global Navigation System) or RTK-GPS (Real Time Kinematic-GPS) guarantee highly accurate, they are more expensive than the construction of a single positioning system using a single GPS. In the case of a low-priced single GPS system, the stability of the positioning data deteriorates. Therefore, it is necessary to supplement the uncertainty of the absolute position data of the UAV and to improve the accuracy of the current position data economically in the operating state of the UAV. The aim of this study was to present an algorithm enhancing the stability of position data in a single GPS mode of UAV with multiple GPS. First, the arrangement of multiple GPS receivers through the center of gravity of the UAV were examined. Next, MD (Mahalanobis Distance) is applied to detect instantaneous errors of GPS data in advance and eliminate outliers to increase the accuracy of previously collected multiple GPS data. Processing procedure for multiple GPS reception data by applying the center of the triangular method were presented to improve the position accuracy. Second, UAV navigation systems integrated multiple GPS through configuration of the UAV specifications were implemented. Using the unmanned airframe equipped with multiple GPS receivers, GPS data is measured with the TCM (Triangular Center Method). In addition, UAV equipped with multiple GPS were operated in study area and locational accuracy of multiple GPS of UAV with VRS (Virtual Reference Station) GNSS surveying were compared. The result showed that the error factors are compensated, and the error range are reduced, resulting in the reliability of the corrected value. In conclusion, the result in this paper is expected to realize high-precision position estimation at low cost in UAV using multiple low-cost GPS receivers.

Analysis of Maritime-based Space Capabilities of Major Countries and Future Direction for South Korea (주요국의 해상기반 우주능력 분석 및 한국의 발전방향)

  • Cho, Taehwan;Lee, Soungsub
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.242-247
    • /
    • 2021
  • Major countries in space field such as the United States, China and Russia have not only general ground-based space capabilities, but also maritime-based space capabilities. Maritime-based space systems include a maritime-based space surveillance system, a maritime-based space launch vehicle, and a maritime-based space information transmission system, and these maritime-based systems complement the ground-based space systems. Therefore, in this paper, we analyze the maritime-based space capabilities of major countries, and propose the future direction for south Korea's maritime-based space capabilities. The maritime-based space system is essential due to the geographical characteristics of south Korea, which has three sides of the ocean, and it is considered an one of important strategic element to become the seven major country in the space field.