• Title/Summary/Keyword: Precision Navigation

Search Result 421, Processing Time 0.022 seconds

Development of Potential-Function Based Motion Control Algorithm for Collision Avoidance Between Multiple Mobile Robots (포텐셜함수(Potential Function)를 이용한 자율주행로봇들간의 충돌예방을 위한 주행제어 알고리즘의 개발)

  • 이병룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.107-115
    • /
    • 1998
  • A path planning using potential field method is very useful for the real-time navigation of mobile robots. However, the method needs high modeling cost to calculate the potential field because of complex preprocessing, and mobile robots may get stuck into local minima. In this paper, An efficient path planning algorithm for multiple mobile robots, based on the potential field method, was proposed. In the algorithm. the concepts of subgoals and obstacle priority were introduced. The subgoals can be used to escape local minima, or to design and change the paths of mobile robots in the work space. In obstacle priority, all the objects (obstacles and mobile robots) in the work space have their own priorities, and the object having lower priority should avoid the objects having higher priority than it has. In this paper, first, potential based path planning method was introduced, next an efficient collision-avoidance algorithm for multiple mobile robots, moving in the obstacle environment, was proposed by using subgoals and obstacle priority. Finally, the developed algorithm was demonstrated graphically to show the usefulness of the algorithm.

  • PDF

The Precision Analysis of Point Positioning Using GPS/GLONASS (GPS/GLONASS 조합에 의한 절대측위 정밀도 분석)

  • 강준묵;이용욱;박정현
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • GPS is an efficient system in surveying and car navigation. but it is difficult to catch minimum number of satellite when it is hindered by obstacle such as city area. GLONASS system doesn't have perfect constellation yet, but it has many similarities with GPS system in principle of point positioning and signal system. so, it is expected to be much efficient when it is used with GPS system. For the purpose of this, the coordinates of GPS and GLONASS system, the quality of time and frequency was investigated, and the algorithm of point positioning was made. also, the efficiency of GPS/GLONASS combination was presented by analysing the precision of 3D point positioning using C/A code and Yuma satellite orbit information.

  • PDF

Requirements Analysis of Image-Based Positioning Algorithm for Vehicles

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.397-402
    • /
    • 2019
  • Recently, with the emergence of autonomous vehicles and the increasing interest in safety, a variety of research has been being actively conducted to precisely estimate the position of a vehicle by fusing sensors. Previously, researches were conducted to determine the location of moving objects using GNSS (Global Navigation Satellite Systems) and/or IMU (Inertial Measurement Unit). However, precise positioning of a moving vehicle has lately been performed by fusing data obtained from various sensors, such as LiDAR (Light Detection and Ranging), on-board vehicle sensors, and cameras. This study is designed to enhance kinematic vehicle positioning performance by using feature-based recognition. Therefore, an analysis of the required precision of the observations obtained from the images has carried out in this study. Velocity and attitude observations, which are assumed to be obtained from images, were generated by simulation. Various magnitudes of errors were added to the generated velocities and attitudes. By applying these observations to the positioning algorithm, the effects of the additional velocity and attitude information on positioning accuracy in GNSS signal blockages were analyzed based on Kalman filter. The results have shown that yaw information with a precision smaller than 0.5 degrees should be used to improve existing positioning algorithms by more than 10%.

Control of Electromagnetic Accelermeter with Digital PWM Technique (서오보형 가속도계의 PMW 제어)

  • Kim, Jung-Han;Oh, Jun-Ho;Che, Woo-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.112-119
    • /
    • 1996
  • Among the various type of accelerometer, the servo rebalancing type accelermoter can be suitable for Inertial Navigation System, because of its high sensitivity and good response in low frequency. In this paper, we proposed a new technology to control inductive tuype accelerometer utilizing digital PWM method. The new developed digital PWM control has special design scheme for transmitting measurement value to outer device in its servo ollp. So it has no quantized error of transforming outputs of sensors to digital domain. The quantized error may make serious problem in INS system, because outputs of sensor are integrated once or twice by digital computer and it happens every sensor reading times. Therefore, in order to get the accurate information such as displacement, it is necessary to measure accurately the input current. In addition, Digital Signal Processing needs digital data transmission, digital PWM method is adaptive for this purpose. We realized a practical circuit for digital PWM control, analyzed the stability of the circuit, and designed the controller etc. In this study, we solved many practical problem for this application, and got out good results.

  • PDF

Analysis of Propagation Environment for Selecting R-Mode Reference and Integrity Station (R-Mode 보정국과 감시국 선정을 위한 전파환경 분석에 관한 연구)

  • Jeon, Joong-Sung;Jeong, Hae-Sang;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.45 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • In ocean field, the spread of the Fourth Industrial Revolution based on information and communication technology requires high precision and stable PNT&D (Position, Navigation, Timing and Data). As the IMO (International Maritime Organization) and IALA (The International Association of Marine Aids to Navigation and Lighthouse Authorities) are requiring backup systems due to mitigate vulnerabilities and the increase of dependency on GNSS (Global Navigation Satellite System), Korea is conducting a research & development of R-Mode. An DGPS (Differentiate Global Positioning System) reference station that uses MF, an existing maritime infrastructure, and AIS (Automatic Identification System) base stations that use 34 integrity station and VHF will be utilized in this study to avoid redundant investment. Because there are radio shadow areas that display low signal levels in the west sea, the establishment of new R-Mode reference and integrity station will be intended to resolve problems regrading the radio shadow area. Because the frequency has a characteristic in that radio wave transmits well along the ground (water surface) in low frequency band, simulation and measurement were conducted therefore this paper to propose candidate sites for R-Mode reference and integrity station resulted through p wave's propagation characteristics analysis. Using this paper, R-Mode reference and integrity station can be established at appropriate locations to resolve radio shadow areas in other regions.

Accuracy Analysis of GNSS-derived Orthometric Height in Mountainous Areas

  • Lee, Jisun;Kwon, Jay Hyoun;Lee, Hungkyu;Park, Jong Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.403-412
    • /
    • 2018
  • Recently, GNSS (Global Navigation Satellite System)-derived orthometric height determination has been studied to improve the time and cost-effectiveness of traditional leveling surveying. However, the accuracy of this new survey method was evaluated when unknown points are located lower than control points. In this study, the accuracy of GNSS-derived orthometric height was examined using TPs (Triangulation Points) to verify the stability of surveying in mountainous areas. The GNSS survey data were obtained from Mungyeong, Unbong/Hadong, Uljin, and Jangseong. Three unknown points were surrounded by more than three UCPs (Unified Control Points) or BMs (Benchmarks) following the guideline for applying GNSS-derived orthometric height determination. A newly developed national geoid model, KNGeoid17 (Korean National Geoid 2017), has been applied for determining the orthometric height. In comparison with the official orthometric heights of the TPs, the heights of the unknown points in Mungyeong and Unbong/Hadong differ by more than 20 cm. On the other hand, TPs in Uljin and Jangseong show 15-16 cm of local bias with respect to the official products. Since the precision of official orthometric heights of TPs is known to be about 10 cm, these errors exceed the limit of the precision. Therefore, the official products should be checked to offer more reliable results to surveyors. As an alternative method of verifying accuracy, three different GNSS post-processing software were applied, and the results from each software were compared. The results showed that the differences in the whole test areas did not exceed 5 cm. Therefore, it was concluded that the precision of the GNSS-derived orthometric height was less than 5 cm, even though the unknown points were higher than the control points.

Precision Assessment of Near Real Time Precise Orbit Determination for Low Earth Orbiter

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • The precise orbit determination (POD) of low earth orbiter (LEO) has complied with its required positioning accuracy by the double-differencing of observations between International GNSS Service (IGS) and LEO to eliminate the common clock error of the global positioning system (GPS) satellites and receiver. Using this method, we also have achieved the 1 m positioning accuracy of Korea Multi-Purpose Satellite (KOMPSAT)-2. However double-differencing POD has huge load of processing the global network of lots of ground stations because LEO turns around the Earth with rapid velocity. And both the centimeter accuracy and the near real time (NRT) processing have been needed in the LEO POD applications--atmospheric sounding or urgent image processing--as well as the surveying. An alternative to differential GPS for high accuracy NRT POD is precise point positioning (PPP) to use measurements from one satellite receiver only, to replace the broadcast navigation message with precise post processed values from IGS, and to have phase measurements of dual frequency GPS receiver. PPP can obtain positioning accuracy comparable to that of differential positioning. KOMPSAT-5 has a precise dual frequency GPS flight receiver (integrated GPS and occultation receiver, IGOR) to satisfy the accuracy requirements of 20 cm positioning accuracy for highly precise synthetic aperture radar image processing and to collect GPS radio occultation measurements for atmospheric sounding. In this paper we obtained about 3-5 cm positioning accuracies using the real GPS data of the Gravity Recover and Climate Experiment (GRACE) satellites loaded the Blackjack receiver, a predecessor of IGOR. And it is important to reduce the latency of orbit determination processing in the NRT POD. This latency is determined as the volume of GPS measurements. Thus changing the sampling intervals, we show their latency to able to reduce without the precision degradation as the assessment of their precision.

Performance Test of the WAAS Tropospheric Delay Model for the Korean WA-DGNSS (한국형 WA-DGNSS를 위한 WAAS 대류층 지연 보정모델의 성능연구)

  • Ahn, Yong-Won;Kim, Dong-Hyun;Bond, Jason;Choi, Wan-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.523-535
    • /
    • 2011
  • The precipitable water vapor (PW) was estimated using Global Navigation Satellite System (GNSS) from several GNSS stations within the Korean Peninsula. Nearby radiosonde sites covering the GNSS stations were used for the comparison and validation of test results. GNSS data recorded under typical and severe weather conditions were used to generalize our approach. Based on the analysis, we have confirmed that the derived PW values from the GNSS observables were well agreed on the estimates from the radiosonde observables within 10 mm level. Assuming that the GNSS observables could be a good weather monitoring tool, we further tested the performance of the current WAAS tropospheric delay model, UNB3, in the Korean Peninsula. Especially, the wet zenith delays estimated from the GNSS observables and from UNB3 delay model were compared. Test results showed that the modelled approach for the troposphere (i.e., UNB3) did not perform well especially under the wet weather conditions in the Korean Peninsula. It was suggested that a new model or a near real-time model (e.g., based on regional model from GNSS or numerical weather model) would be highly desirable for the Korean WA-DGNSS to minimize the effects of the tropospheric delay and hence to achieve high precision vertical navigation solutions.

Displacement Analysis of Enormous Structure using RTK GPS (RTK GPS를 이용한 거대구조물 변위 분석)

  • 박운용;홍순헌;차성렬;김정동
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.97-101
    • /
    • 2003
  • Among GPS methods, first of all, we used RTK GPS to analyze the precision of monitoring and then on the basis of it, we developed a monitoring system using RTK GPS when we measured the behavior of main tower of a suspension bridge by using RTK GPS method and IMU, which was an inertia navigation system. Comparing a deviation between observation value using IMU and RTK GPS, X axis was 1mm, Y axis 1mm and Z axis 2.21mm. It turned out that it was possible to monitor and measure structures by using RTK GPS method. Besides, in order to manage the structures and prevent their disaster, the transformed monitoring, which used dynamic RTK GPS measurement method, was applied in real time. It was verified that it could be used as transformed monitoring measurement method for massive structures.

  • PDF

Comparison of Ionospheric Spatial Gradient Estimation Methods using GNSS (GNSS를 이용한 전리층 기울기 추정 방법 비교)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.18-24
    • /
    • 2007
  • The high ionospheric spatial gradient during ionospheric storm is the most concern when applying GNSS(Global Navigation Satellite System) augmentation systems for aircraft precision approach. Since the ionospheric gradient level depends on geographical location as well as the storm, understanding the ionospheric gradient statistics over a specific regional area is necessary for operating the augmentation systems. This paper compares three ionosphere gradient computation methods, direct differentiation between two receivers' ionospheric delay signal for a common satellite, derivation from a grid ionosphere map, and derivation from a plate ionosphere map. The plate map method provides a good indication on the gradient variation behavior over a regional area with limited number of GNSS receivers. The residual analysis for the ionosphere storm detection is discussed as well.

  • PDF