• Title/Summary/Keyword: Precision Cutting

Search Result 1,619, Processing Time 0.024 seconds

A Study on Formed Tool to Machine Milli-structure Mold (미세구조물 금형가공을 위한 총형공구에 관한 연구)

  • Lee, Hi-Koan;Kim, Yeun-Sul;Kim, Do-Hyung;Roh, Sang-Heup;Yang, Gyun-Eui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.5-10
    • /
    • 2003
  • This paper presents the formed tool to machine a milli-structure mold. The formed tool is used to machine the geometrical shape of bearing rubber seal for precision machining. The bearing rubber seal has milli-sized complex geometry. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining die of the bearing seal. In this paper, it is performed to investigate properties of the formed tool; tool wear, cutting force and machined surface roughness. Tool wear increases rapidly with clearance angle Increase. Thus, the dimension accuracy is affected by the clearance angle.

  • PDF

Ultra Precision Machining Technology Development of Subminiature Optics of Proximity and Wide Field of View (초정밀 가공기를 이용한 근접초소형 광시야각 광학계 기술 개발)

  • Kim, M.S.;Yang, S.C.;Kim, H.S.;Kim, G.H.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.96-101
    • /
    • 2008
  • Due to improve form accuracy and surface roughness of a aspheric lens core that is made of Ni, the study is carried out on localization about a Subminiature Optics of Proximity and Wide Field of View. The required form accuracy P-V $0.2{\mu}m$ and surface roughness is Ra 10 nm. The design of experiment(DOE) is adopted to find a optimal cutting conditions which are spindle speed, depth of cut, feedrate. Finally, the effects of this study are replacing importation and strengthening competitiveness through the localization of the Subminiature Optics of Proximity and Wide Field of View.

  • PDF

A study on the Development of CNC Lathe HOT-1000 (피스톤 가공용 CNC 선반 HOT-1000 개발에 관한 연구)

  • 김경석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.12-17
    • /
    • 1995
  • The purpose of this study si the development of a lathe which can cut any pistons of oval shape with high seed, accuracy and precision by CNC (Computer Numerical Control) method. Yaxis which is the position determinating mechanism with high speed response was added to the CNC lathe and the ovality and profile was cut under the control of C-Y-Z axes at same tile. In the case of ovality of $\Phi$ improved up to 2500rpm(Y axis : 83Hz) by high speed cutting than modeling method. Since a personal computer is used, it is easy to change the shape of piston and can be applied promptly to many types of piston shape by only changing data files.

  • PDF

Development of a Cutting Simulation System using Octree Algorithm (옥트리 알고리즘을 이용한 절삭 시뮬레이션 시스템의 개발)

  • Kim Y-H.;Ko S.-L.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.2
    • /
    • pp.107-113
    • /
    • 2005
  • Octree-based algorithm is developed for machining simulation. Most of commercial machining simulators are based on Z map model, which have several limitations to get a high precision in 5 axis machining simulation. Octree representation is three dimensional decomposition method. So it is expected that these limitations be overcome by using octree based algorithm. By using the octree model, storage requirement is reduced. And also recursive subdivision was processed in the boundaries, which reduces useless computation. The supersampling method is the most common form of the anti-aliasing and usually used with polygon mesh rendering in computer graphics. Supersampling technique is applied for advancing its efficiency of the octree algorithm.

machining of sculptured surfaces using partition machining method (분할가공법에 의한 자유곡면가공)

  • Lee, Tae-Whi;Lee, Sang-Joe
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2114-2120
    • /
    • 1997
  • This paper presents precision machining of sculptured surfaces with a flat end cutter as follows; tool path generation using partition machining method and elimination interference. These days many researchers are getting interested in flat end cutter having a good cutting performance as machine tool for machining sculptured surfaces. It can get low curvature surfaces and have a much better material removal rates and longer tool life. Partition machining method is the first submitted in this paper. It is a new method of tool path generation, which means the way to map surfaces under the normal vector and then to cut them partially.

Micro-hole Machining Technology for using Micro-tool (마이크로 공구를 이용한 미세구멍가공기술)

  • Heo, N.H.;Lee, S.W.;Choi, H.Z.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1787-1792
    • /
    • 2003
  • Recently with the development of semiconductor technology, the miniaturization of parts and products as well as their high precision is required. In addition, as the national competitiveness is increasingly affected by the development of the micro parts through micro machining technology, the study of the micro machining technology is being conducted in many countries. The goal of this study is to fabricate micro tools under the size of $20{\mu}m$ and to machine micro holes using them. The fabrication is done by grinding and the application of ELID to the grinding wheel. The surface roughness of the micro tools is measured to evaluate the study.

  • PDF

Presumption for Mutual Relation of the End-Milling Condition on Surface Roughness of ST S304 by Regression Analysis (회귀분석을 이용한 STS304의 표면정도에 미치는 엔드밀 가공조건의 상관관계 추정)

  • Ryu, M.R.;Lee, S.J.;Bae, H.J.;Jin, D.K.;Jun, T.O.;Park, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1822-1827
    • /
    • 2003
  • End-milling have been used widely in industrial system because it is effective to a material manufacturing with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum surface roughness has an effect on end-milling condition such as, cutting direction, spindle speed, feed rate and depth of cut, etc. Therefore this study was carried out to presume for mutual relation of end-milling condition to get the optimum surface roughness by regression analysis. The results shown that coefficient of determination($R^{2}m$) of regression equation has a fine reliability over 80% and regression equation of surface rough is made by regression analysis.

  • PDF

On-the-go Soil Strength Profile Sensor to Quantify Spatial and Vertical Variations in Soil Strength

  • Chung, Sun-Ok;Sudduth, Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2005
  • Because soil compaction is a concern in crop production and environmental pollution, quantification and management of spatial and vertical variability in soil compaction for soil strength) would be a useful aspect of site -specific field management. In this paper, a soil strength profile sensor (SSPS) that could take measurements continuously while traveling across the field was developed and the performance was evaluated through laboratory and field tests. The SSPS obtained data simultaneously at 5 evenly spaced depths up to 50 em using an array of load cells, each of which was interfaced with a soil-cutting tip. Means of soil strength measurements collected in adjacent, parallel transects were not significantly different, confirming the repeatability of soil strength sensing with the SSPS. Maps created with sensor data showed spatial and vertical variability in soil strength. Depth to the restrictive layer was different for different field locations, and only 5 to 16% of the tested field areas were highly compacted.

  • PDF

Trends in AI Computing Processor Semiconductors Including ETRI's Autonomous Driving AI Processor (인공지능 컴퓨팅 프로세서 반도체 동향과 ETRI의 자율주행 인공지능 프로세서)

  • Yang, J.M.;Kwon, Y.S.;Kang, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.57-65
    • /
    • 2017
  • Neural network based AI computing is a promising technology that reflects the recognition and decision operation of human beings. Early AI computing processors were composed of GPUs and CPUs; however, the dramatic increment of a floating point operation requires an energy efficient AI processor with a highly parallelized architecture. In this paper, we analyze the trends in processor architectures for AI computing. Some architectures are still composed using GPUs. However, they reduce the size of each processing unit by allowing a half precision operation, and raise the processing unit density. Other architectures concentrate on matrix multiplication, and require the construction of dedicated hardware for a fast vector operation. Finally, we propose our own inAB processor architecture and introduce domestic cutting-edge processor design capabilities.

Deformation analysis of Tool and Tool holder for Micromachining by FEM (FEM을 이용한 Micromachining용 Tool 및 Tool holder의 변형해석)

  • Min, Kyung-Tak;Jang, Ho-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.87-92
    • /
    • 2010
  • Micromachining technology using a ultra-precision micromachining system is widely applied in the fields of optics, biotechnology and analytical chemistry, etc. specially in microfabrication of fresnel lens, light guide panels of TFT-LED and PDP ribs with micro-patterns, machining errors have an effect on the performance of those products. The deflection of tool and tool holder is known to be one of the very important factors that is due to machining errors in micromachining. The deflections of diamond tool and tool holder used in micro-grooving are analysed by FEM. We analysed by FEM. With an linearity valuation of FEM, deflection of tool and tool holder is calculated by using the data of cutting force which is acquired from micro-V groove machining experiments in micromachining system.