• Title/Summary/Keyword: Precise measurement

Search Result 1,032, Processing Time 0.029 seconds

Assessment of Congruence Angle according to the Central X-ray in the Merchant View of Patellofemoral Joint (슬대퇴관절의 Merchant View에서 중심 X선 위치에 따른 일치각 평가)

  • Kim, Hyun-jin;Joo, Yeong-chul;Choi, Jae-ho;Lim, Woo-taek
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.423-428
    • /
    • 2019
  • The Precise measurement of the knee's Congruence angle is required for diagnosis of patella dislocation. The purpose of this study is to consider the distortion diagram and usefulness about the test of the bilateral side and one side through the evaluating congruence angle from Merchant view of patellofemoral joint to central X-ray. We've evaluated the sulcus angle and Congruence angle following central X-ray's changes when we took Merchant view of patellofemoral joint aimed to right lower limb from human whole body phantom. The subject of the evaluation was classified as normal group and varus group, and the varus group has experimented with External rotation of legs as 15° and 30°. When normal groups result as 0, 7.5, 15 cm, it was measured as 17.25 ± 1.34°, 19.60 ± 1.41°, 20.55 ± 1.77° each. The gap between minimal and maximum angle was 3.3°, and the value was shown as getting bigger when it further away from the centeral X-ray. When Congruence angle in 15° varus group was 0, 7.5, 15 cm, it was each 16.45 ± 1.34°, 17.10 ± 0.99°, 17.80 ± 1.13°. And when Congruence angle in 30° varus group was 0, 7.5, 15 cm, it was measured each 18.35 ± 1.63°, 18.95 ± 1.06°, 19.60 ± 1.41°. The difference between minimum and maximum of angle in 15° varus group and 30° varus group was each 1.35° and 1.25°, the angles have shown as increasing the further away from the center. The patellofemoral joint showed that the congruence angle increases as the further away from Central X-ray, and also it is judged that is possible to change the congruence angle by a degree of varus knee. Thus, accurate measurement of the congruence angle is shown to advantage that methods for examining by split each side at two times than methods for examining both sides at a time. Therefore, it is expected to helpful on the diagnostic side of patella dislocation and subluxation.

Introduction and Application of 3D Terrestrial Laser Scanning for Estimating Physical Structurers of Vegetation in the Channel (하도 내 식생의 물리적 구조를 산정하기 위한 3차원 지상 레이저 스캐닝의 도입 및 활용)

  • Jang, Eun-kyung;Ahn, Myeonghui;Ji, Un
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 2020
  • Recently, a method that applies laser scanning (LS) that acquires vegetation information such as the vegetation habitat area and the size of vegetation in a point cloud format has been proposed. When LS is used to investigate the physical shape of vegetation, it has the advantage of more accurate and rapid information acquisition. However, to examine uncertainties that may arise during measurement or post-processing, the process of adjusting the data by the actual data is necessary. Therefore, in this study, the physical structure of stems, branches, and leaves of woody vegetation in an artificially formed river channel was manually investigated. The obtained results then compared with the information acquired using the three-dimensional terrestrial laser scanning (3D TLS) method, which repeatedly scanned the target vegetation in various directions to obtain relevant information with improved precision. The analysis demonstrated a negligible difference between the measurements for the diameters of vegetation and the length of stems; however, in the case of branch length measurement, a relatively more significant difference was observed. It is because the implementation of point cloud information limits the precise differentiation between branches and leaves in the canopy area.

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.

Identification of the Sectional Distribution of Sound Source in a Wide Duct (넓은 덕트 단면내의 음원 분포 규명)

  • Heo, Yong-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • If one identifies the detailed distribution of pressure and axial velocity at a source plane, the position and strength of major noise sources can be known, and the propagation characteristics in axial direction can be well understood to be used for the low noise design. Conventional techniques are usually limited in considering the constant source characteristics specified on the whole source surface; then, the source activity cannot be known in detail. In this work, a method to estimate the pressure and velocity field distribution on the source surface with high spatial resolution is studied. The matrix formulation including the evanescent modes is given, and the nearfield measurement method is proposed. Validation experiment is conducted on a wide duct system, at which a part of the source plane is excited by an acoustic driver in the absence of airflow. Increasing the number of evanescent modes, the prediction of pressure spectrum becomes further precise, and it has less than -25 dB error with 26 converged evanescent modes within the Helmholtz number range of interest. By using the converged modal amplitudes, the source parameter distribution is restored, and the position of the driver is clearly identified at kR = 1. By applying the regularization technique to the restored result, the unphysical minor peaks at the source plane can be effectively suppressed with the filtering of the over-estimated pure radial modes.

A STUDY ON ACCURACY OF MAXILLARY REPOSITIONING BY EXTERNAL MEASURING TECHIQUE (외부계측법에 의한 상악골 이동의 위치적 정확도에 대한 평가 연구)

  • Park, Hyung-Sik;Cha, In-Ho;Park, Hyung-Rae
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.13 no.1
    • /
    • pp.44-52
    • /
    • 1991
  • Internal measurement technique has been commonly and classically used to guide down-fractured maxilla by Le Fort I osteotomy into its new position during intraoperative procedure for correlating preoperative model works with surgery. However, It has been challenged now by several authors due to some problems as its inaccuracy in three-dimensional changes at surgery, difficulty to measure during surgery and impossibility of rechecking at the end of surgery etc. The purpose of this study was to evaluate the accuracy of maxillary movement by external measuring technique and to determine its accuracy between the prediction tracing and a new maxillary position. The results indicate that the external measuring technique was predictable in the vertical, horizontal and transverse change of the maxilla as its prediction, however, it has a tendency to shift the maxilla more anterior and inferior in overall direction than prediction. Post-operative canting difference were mimic, however Ehange of the maxillary dental midline was large and had a right-shifting tendency.1 The precise methods to keep maxillary dental midline as same as prediction and the avoidance of uneven force applied to the mandible for autorotation should be necessary during surgery in use of external measurement technique.

  • PDF

Long Term Evaluation of the Effect of Botulinum Toxin A Injection on the Masseteric (교근 비대 환자에서 보툴리눔 A형 독소 주사 효과의 장기적 평가)

  • Hong, Hee-Suk;Kang, Seung-Chul;Kim, Chong-Youl;Kim, Seong-Taek
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.121-129
    • /
    • 2005
  • In this experiment, eleven volunteers were followed up for 15 months after the injection of botulinum toxin type A on right and left masseter muscles. The measurement of masseter muscle atrophy for each volunteer was performed by CT(computed tomography) three times: before the injection, three and fifteen months after the injection. The thickness and area of muscle were measured in three positions which are 10 (position 1), 20 (position 2), and 40 mm (position 3) above the inferior border of mandible(the injection site was nearest the position 1). The thickness of masster muscle was decreased in all three positions three months after the injection, but no significant change was observed fifteen months after the injection. On the other hand, the area of masster muscle was decreased in all three positions three months after the injection. Furthermore, the area was decreased significantly in positions 1 and 2, but not in position 3 fifteen months after the injection. As a result, toxin is still in effect even fifteen months after the injection. Finally, the present study shows that the measurement of muscle area provides more precise informations than that of muscle thickness does.

Measurement of Refractive Index of Liquids by the Maximum and Minimum Deviated Laser Beam (레이저광의 최대.최소 편향법을 이용한 액체의 굴절률 측정)

  • Lee, Jae-Ran;Kim, Sok-Won;Lee, Yong-San
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.182-186
    • /
    • 2008
  • The prism spectrometer is a standard device for the measurement of refractive index; it is used in undergraduate laboratories. Typically, however, lots of attention is required in the alignment, and the accuracy of the obtained refractive index is not so high in spite of the durability of the device. The maximum and minimum deviation method, which compensates the disadvantages of the prism spectrometer, can be composed cost effectively using a length marking tape and a rotating platform. It can measure the refractive indices accurately by utilizing a wide screen. In this study, the equal sided hollow prism whose length is 26 mm was fabricated and measured the refractive indices of seven kind of liquids (pure water, $C_3H_5(OH)_2$, $CCl_4$, $C_6H_4NH_2$, $CS_2$, $C_6H_4(CH_3)_2)$ by using the prism spectrometer and maximum and minimum deviated laser beam method at the wavelengths of He-Ne laser (${\lambda}$= 632.8 nm) and YVO4 laser (${\lambda}$= 532 nm). The result shows that the data obtained by the latter method are more accurate and precise than those obtained by the former device.

Analysis of Experiments for 'Measuring the size of Earth in 8th Science Textbooks

  • Chae, Dong-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.7
    • /
    • pp.901-907
    • /
    • 2010
  • The purpose of this study is to analyze methods for measuring the size of the Earth, put forth in 6 different Korean 8th grade science textbooks. The research questions are as follows: 1) Do they adequately map out the experiments for measuring the size of the earth by using the concept of the sun's altitude? 2) Do they reduce the size of the sun like as the Earth is similarly downsized to the globe? 3) Do they suggest the precise experimental conditions for selecting two equal longitudinal spots for measuring the size of the earth? 4) Do they design adequate experiments for exact measurement? 5) Do they offer a proportional expression for seeking the size of globe which is easily understood by students? 6) Do they develop experiments to measure actual size of the earth? Four graduate students and one researcher took part in this study. All conditions were unanimously agreed upon by the participants. The results are as follows. First, one publishing company must include the concept of the sun's altitude to accurately measure the size of the Earth. However, some textbooks fail to mention this. As such, the concept of the sun's altitude must be introduced to accurately measure the size of the Earth. Second, a reduced size globe is used as the actual earth so; the sun should be factored in with a reduced light value. Third, you have to lay a stress on two points at the same longitude. In other words, a shadow located at the same longitude from two randomly selected points. Most textbooks mention two points at the same longitude but two of them design the experiment with a shadow at the same longitude. Fourth, we need a method to precisely measure the angle between a stick and its shadow. The angle between the stick and the tip of its shadow is the sun's altitude difference. Fifth, we need to present more specific proportional expressions for calculating the size of the globe. Only 3 out of the 6 texts employed a proportional expression. Sixth, we need to calculate the size of the earth by accurately presenting the scale of the globe to attain the goal of the experiment. Two of the texts analyzed, designed the experiment for the purpose of calculating the size of the globe. Three of the texts designed their experiments to calculate the radius of globe which is not even relevant to the purpose of experiment.

Quality Evaluation of the High-purity Limestones for Lime Manufacturing Based on the Measurements of Shape Factor and Grain Boundary Frequency (형상계수 및 경계빈도수 측정에 의거한 생석회 제조용 고품위석회석의 품질 평가)

  • Noh, Jin-Hwan;Lee, Hyun-Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.371-383
    • /
    • 2009
  • Crystallinity and textural relations, which are crucial in terms of the quality concept of high-purity limestone, have not been effectively applicable to the limestone evaluation as crude ore due to the difficulties in precise measurements. To overcome the above, as a new method of ore characterization, a measurement of shape factor and grain boundary frequency utilizing the image analysing system was adopted in this study. Some domestic limestones used for lime manufacturing were investigated by such a quality evaluation method, and its results are discussed and correlated each other samples. As the result, even though calcite contents of crude ore, i.e., limestone grade and its crystal size are similar, quality of manufactured lime is remarkably different depending on the degree of shape factor and grain boundary frequency. In other words, as the more irregular in crystal shape and the higher the grain boundary frequency, the manufactured quick lime became more superior in all terms of lime quality such as rate of calcination, porosity, reactivity, sintering and decrepitation effect. However, because the quick lime become easily overheated in case of relatively higher degree in shape factor and grain boundary effect, a technology minimizing heating time is necessary for the manufacturing of high quality lime. In limestone industry, such a ore characterization method will be much more reasonable than the conventional method by measurement of mean size, because the method may collectively comprise crystal shape and other textural factors which can not be numerically evaluated in the past.

Variation of Hydrogen Residue on Metallic Samples by Thermal Soaking in an Inert Gas Environment (불활성 가스하 열건조에 따른 금속시험편의 수소잔류물 거동 분석)

  • Lee, Yunhee;Park, Jongseo;Baek, Unbong;Nahm, Seunghoon
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • Hydrogen penetration into a metal leads to damages and mechanical degradations and its content measurement is of importance. For a precise measurement, a sample preparation procedure must be optimized through a series of studies on sample washing and drying. In this study, two-step washing with organic solvents and thermal soaking in inert gas were tried with a rod-shaped, API X65 steel sample. The samples were machined from a steel plate and then washed in acetone and etyl-alcohol for 5 minute each and dried with compressed air. After then, the samples were thermally soaked in a home-made nitrogen gas chamber during 10 minute at different heat gun temperatures from 100 to $400^{\circ}C$ and corresponding temperature range in the soaking chamber was from 77 to $266^{\circ}C$ according to the temperature calibration. Hydrogen residue in the samples was measured with a hot extraction system after each soaking step; hydrogen residue of $0.70{\pm}0.12$ wppm after the thermal soaking at $77^{\circ}C$ decayed with increase of the soaking temperature. By adopting the heat transfer model, decay behavior of the hydrogen residue was fitted into an exponential decay function of the soaking temperature. Saturated value or lower bound of the hydrogen residue was 0.36 wppm and chamber temperature required to lower the hydrogen residue about 95% of the lower bound was $360^{\circ}C$. Furthermore, a thermal desorption spectroscopy was done for the fully soaked samples at $360^{\circ}C$. Weak hydrogen peak was observed for whole temperature range and it means that hydrogen-related contaminants of the sample surface are steadily removed by heating. In addition, a broad peak found around $400^{\circ}C$ means that parts of the hydrogen residue are irreversibly trapped in the steel microstructure.