• Title/Summary/Keyword: Precise agricultural land use

Search Result 7, Processing Time 0.025 seconds

SEMI-AUTOMATIC EXTRACTION OF AGRICULTURAL LAND USE AND VEGETATION INFORMATION USING HIGH RESOLUTION SATELLITE IMAGES

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.147-150
    • /
    • 2008
  • This study refers to develop a semi-automatic extraction of agricultural land use and vegetation information using high resolution satellite images. Data of IKONOS satellite image (May 25 of 2001) and QuickBird satellite image (May 1 of 2006) which resembles with the spatial resolution and spectral characteristics of KOMPSAT3. The precise agricultural land use classification was tried using ISODATA unsupervised classification technique and the result was compared with on-screen digitizing land use accompanying with field investigation. For the extraction of vegetation information, three crops of paddy, com and red pepper were selected and the spectral characteristics were collected during each growing period using ground spectroradiometer. The vegetation indices viz. RVI, NDVI, ARVI, and SAVI for the crops were evaluated. The evaluation process is under development using the ERDAS IMAGINE Spatial Modeler Tool.

  • PDF

EVALUATION OF SPATIAL SOIL LOSS USING THE LAND USE INFORMATION OF QUICKBIRD SATELLITE IMAGERY

  • Lee, Mi-Seon;Park, Jong-Yoon;Jung, In-Kyun;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.274-277
    • /
    • 2007
  • This study is to estimate the spatial distribution of soil loss using the land use data produced from QuickBird satellite imagery. For a small agricultural watershed (1.16 $km^2$) located in the upstream of Gyeongan-cheon watershed, a precise agricultural land use map were prepared using QuickBird satellite image of April 5 of 2003. RUSLE (Revised Universal Soil Loss Equation) was adopted for soil loss estimation. The data (DEM, soil and land use) for the RUSLE were prepared for 5 m and 30 m spatial resolution. The results were compared with each other and the result of 30 m Landsat land use data.

  • PDF

Extraction of Agricultural Land Use and Crop Growth Information using KOMPSAT-3 Resolution Satellite Image (KOMPSAT-3급 위성영상을 이용한 농업 토지이용 및 작물 생육정보 추출)

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.411-421
    • /
    • 2009
  • This study refers to develop a semi-automatic extraction of agricultural land use and vegetation information using high resolution satellite images. Data of IKONOS-2 satellite images (May 25 of 2001, December 25 of 2001, and October 23 of 2003), QuickBird-2 satellite images (May 1 of 2006 and November 17 of 2004) and KOMPSAT-2 satellite image (September 17 of 2007) which resemble with the spatial resolution and spectral characteristics of KOMPSAT-3 were used. The precise agricultural land use classification was tried using ISODATA unsupervised classification technique, and the result was compared with on-screen digitizing land use accompanying with field investigation. For the extraction of crop growth information, three crops of paddy, com and red pepper were selected, and the spectral characteristics were collected during each growing period using ground spectroradiometer. The vegetation indices viz. RVI, NDVI, ARVI, and SAVI for the crops were evaluated. The evaluation process was developed using the ERDAS IMAGINE Spatial Modeler Tool.

ANALYSIS OF NON-POINT SOURCE POLLUTION LOADING IN A SMALL RURAL WATERSHED USING HIGH SPATIAL RESOLUTION IMAGE

  • Park, Jong-Yoon;Lee, Mi-Seon;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.229-233
    • /
    • 2007
  • This study is to test the applicability of QuickBird image for non-point source pollution assessment. SWAT (Soil and Water Assessment Tool) model was adopted and the model was calibrated for a stream watershed of 255.4 $km^2$ Landsat land use data. For model application with QuickBird image, a precise agricultural land use map of 1.16 $km^2$ area located in the upstream watershed was produced by field investigation. The model was run with the combination of land use and soil map scales (1:5,000, 1:25,000 and 1:50,000). The results were compared and analyzed for the contribution of non-point source pollution by the land use scale and contents.

  • PDF

Soil Erosion Assessment Using RS/GIS for Watershed Management in Dukchun River Basin, a Tributary of Namgang and Jinyang Lake

  • Cho Byung Jin;Yu Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.3-12
    • /
    • 2004
  • The need to predict the rate of soil erosion, both under existing conditions and those expected to occur following soil conservation practice, has been led to the development of various models. In this study Morgan model especially developed for field-sized areas on hill slopes was applied to assess the rate of soil erosion using RS/GIS environment in the Dukchun river basin, one of two tributaries flowing into Jinyang lake. In order to run the model, land cover mapping was made by the supervised classification method with Landsat TM satellite image data, the digital soil map was generated from scanning and screen digitizing from the hard copy of soil maps, digital elevation map (DEM) in order to generate the slope map was made by the digital map (DM) produced by National Geographic Information Institute (NGII). Almost all model parameters were generated to the multiple raster data layers, and the map calculation was made by the raster based GIS software, IL WIS which was developed by ITC, the Netherlands. Model results show that the annual soil loss rates are 5.2, 18.4, 30.3, 58.2 and 60.2 ton/ha/year in forest, paddy fields, built-up area, bare soil, and upland fields respectively. The estimated rates seemed to be high under the normal climatic conditions because of exaggerated land slopes due to DEM generation using 100 m contour interval. However, the results were worthwhile to estimate soil loss in hilly areas and the more precise result could be expected when the more accurate slope data is available.

Applicability of Supervised Classification for Subdividing Forested Areas Using SPOT-5 and KOMPSAT-2 Data (산림지역 분류를 위한 SPOT-5 및 KOMPSAT-2 영상의 감독분류 적용성)

  • Choi, Jaeyong;Lee, Sanghyuk;Lee, Sol Ae;Ji, Seung Yong;Lee, Peter Sang-Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.89-104
    • /
    • 2015
  • In order to effectively manage forested areas in South Korea on a national scale, using remotely sensed data is considered most suitable. In this study, utilizing Land coverage maps and Forest type maps of national geographic information instead of collecting field data was tested for conducting supervised classification on SPOT-5 and KOMPSAT-2 imagery focusing on forested areas. Supervised classification were conducted in two ways: analysing a whole area around the study site and/or only forested areas around the study site, using Support Vector Machine. The overall accuracy for the classification on the whole area ranged from 54.9% to 68.9% with kappa coefficients of over 0.4, which meant the supervised classification was in general considered moderate because of sub-classifying forested areas into three categories (i.e. hardwood, conifer, mixed forests). Compared to this, the overall accuracy for forested areas were better for sub-classification of forested areas probably due to less distraction in the classification. To further improve the overall accuracy, it is needed to gain individual imagery rather than mosaic imagery to use more spetral bands and select more suitable conditions such as seasonal timing. It is also necessary to obtain precise and accurate training data for sub-classifying forested areas. This new approach can be considered as a basis of developing an excellent analysis manner for understanding and managing forest landscape.

Predicting the Goshawk's habitat area using Species Distribution Modeling: Case Study area Chungcheongbuk-do, South Korea (종분포모형을 이용한 참매의 서식지 예측 -충청북도를 대상으로-)

  • Cho, Hae-Jin;Kim, Dal-Ho;Shin, Man-Seok;Kang, Tehan;Lee, Myungwoo
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.333-343
    • /
    • 2015
  • This research aims at identifying the goshawk's possible and replaceable breeding ground by using the MaxEnt prediction model which has so far been insufficiently used in Korea, and providing evidence to expand possible protection areas for the goshawk's breeding for the future. The field research identified 10 goshawk's nests, and 23 appearance points confirmed during the 3rd round of environmental research were used for analysis. 4 geomorphic, 3 environmental, 7 distance, and 9 weather factors were used as model variables. The final environmental variables were selected through non-parametric verification between appearance and non-appearance coordinates identified by random sampling. The final predictive model (MaxEnt) was structured using 10 factors related to breeding ground and 7 factors related to appearance area selected by statistics verification. According to the results of the study, the factor that affected breeding point structure model the most was temperature seasonality, followed by distance from mixforest, density-class on the forest map and relief energy. The factor that affected appearance point structure model the most was temperature seasonality, followed by distance from rivers and ponds, distance from agricultural land and gradient. The nature of the goshawk's breeding environment and habit to breed inside forests were reflected in this modeling that targets breeding points. The northern central area which is about $189.5 km^2$(2.55 %) is expected to be suitable breeding ground. Large cities such as Cheongju and Chungju are located in the southern part of Chungcheongbuk-do whereas the northern part of Chungcheongbuk-do has evenly distributed forests and farmlands, which helps goshawks have a scope of influence and food source to breed. Appearance point modeling predicted an area of $3,071 km^2$(41.38 %) showing a wider ranging habitat than that of the breeding point modeling due to some limitations such as limited moving observation and non-consideration of seasonal changes. When targeting the breeding points, a specific predictive area can be deduced but it is difficult to check the points of nests and it is impossible to reflect the goshawk's behavioral area. On the other hand, when targeting appearance points, a wider ranging area can be covered but it is less accurate compared to predictive breeding point since simple movements and constant use status are not reflected. However, with these results, the goshawk's habitat can be predicted with reasonable accuracy. In particular, it is necessary to apply precise predictive breeding area data based on habitat modeling results when enforcing an environmental evaluation or establishing a development plan.