• Title/Summary/Keyword: Precise GPS Positioning

Search Result 274, Processing Time 0.019 seconds

A Study on MBES Error Data Removing using Motion Sensor (Motion Sensor를 이용한 MBES 오측자료 제거 연구)

  • Kang, Moon-Kwon;Choi, Yun-Soo;Chang, Min-Chol;Yoon, Ha-Su
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Sounding data is the essential source for the safety of ships navigation system, and fundamental to the reasonable usage and maintenance of the ocean as well. As IT tech, positioning equipment such as GPS and INS, echo sounder are developed, recently, the precise submarine topography database bas been built by Multi-Beam Echo Sounder. However, MBES data includes some inevitable error caused by several factor, and some data have errors where the terrain is wobble. The error, which causes the $moir\acute{e}$ pattern error is the main factor hindering the accuracy of MBES data results, and therefore it is necessary to figure out the main cause of the error for the improvement of the accuracy by removing error data. On this research, the main cause of the error data is studied by analyzing motion sensor value of data including the $moir\acute{e}$ pattern error. Thus, as the result of examination, it turns out that the $moir\acute{e}$ pattern error is related to the standard deviation of Roll, and error data values are results of the non-correspondence between Swath data and Roll values caused by the drastic change of Roll values. Accordingly, the error data is removed by comparing between the gradient of Swath data and Roll values. Finally, as the result of removing error data, it is expected to be able to estimate the quality of MBES using the standard deviation of Motion sensor's Roll value, and calculate the additive error factor, which minimize non-corresponding data, and also this research must be contributed to improve the accuracy of sounding for small vessels with lots of motion in the bad circumstance for navigation.

NIR-TECHNOLOGY FOR RATIONALE SOIL ANALYSIS WITH IMPLICATIONS FOR PRECISION AGRICULTURE

  • Stenberg, Bo
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1061-1061
    • /
    • 2001
  • The scope of precision agriculture is to reach the put up cultivation goals by adjusting inputs as precise as possible after what is required by the soil and crop potentials, on a high spatial resolution. Consequently, precision agriculture is also often called site specific agriculture. Regulation of field inputs “on the run” has been made possible by the GPS (Geographical Position System)-technology, which gives the farmer his exact real time positioning in the field. The general goal with precision agriculture is to apply inputs where they best fill their purpose. Thus, resources could be saved, and nutrient losses as well as the impact on the environment could be minimized without lowering total yields or putting product quality at risk. As already indicated the technology exists to regulate the input based on beforehand decisions. However, the real challenge is to provide a reliable basis for decision-making. To support high spatial resolution, extensive sampling and analysis is required for many soil and plant characteristics. The potential of the NIR-technology to provide rapid, low cost analyses with a minimum of sample preparation for a multitude of characteristics therefore constitutes a far to irresistible opportunity to be un-scrutinized. In our work we have concentrated on soil-analysis. The instrument we have used is a Bran Lubbe InfraAlyzer 500 (1300-2500 nm). Clay- and organic matter-contents are soil constituents with major implications for most properties and processes in the soil system. For these constituents we had a 3000-sample material provided. High performance models for the agricultural areas in Sweden have been constructed for clay-content, but a rather large reference material is required, probably due to the large variability of Swedish soils. By subdividing Sweden into six areas the total performance was improved. Unfortunately organic matter was not as easy to get at. Reliable models for larger areas could not be constructed. However, through keeping the mineral fraction of the soil at minimal variation good performance could be achieved locally. The influence of a highly variable mineral fraction is probably one of the reasons for the contradictory results found in the literature regarding organic matter content. Tentative studies have also been performed to elucidate the potential performance in contexts with direct operational implications: lime requirement and prediction of plant uptake of soil nitrogen. In both cases there is no definite reference method, but there are numerous indirect, or indicator, methods suggested. In our study, field experiments where used as references and NIR was compared with methods normally used in Sweden. The NIR-models performed equally or slightly better as the standard methods in both situations. However, whether this is good enough is open for evaluation.

  • PDF

Application of Navigating System based on Bluetooth Smart (블루투스 스마트 기반의 내비게이팅 시스템)

  • Lee, YoungDoo;Jan, Sana Ullah;Koo, Insoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Bluetooth Low Energy (BLE), also known as Bluetooth Smart, has ultra-low power consumption; in fact, BLE-enabled devices can run on a single coin cell battery for several years. In addition, BLE can estimate the approximate distance between two devices using the Received Signal Strength Indication (RSSI) feature, enabling relatively precise navigation in indoor and small outdoor areas where GPS is not an option. In this paper, an experimental setup is presented in which BLE is used for navigation within a small outdoor area. BLE-based beacons are installed in fixed positions, which periodically transmit a universally unique identifier (UUID). A smart device receives the UUID and sends it to a database server using cellular or Wi-Fi technology. The server returns fixed position information corresponding to the received UUID codes, and the smart device uses that information to compute its current position based on relative signal strengths, and display it on a map. These results demonstrate the successful application of BLE technology for navigation in small outdoor areas. This system can be implemented for indoor navigation as well.

Augmented Reality (AR)-Based Sensor Location Recognition and Data Visualization Technique for Structural Health Monitoring (구조물 건전성 모니터링을 위한 증강현실 기반 센서 위치인식 및 데이터시각화 기술)

  • Park, Woong Ki;Lee, Chang Gil;Park, Seung Hee;You, Young Jun;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • In recent years, numerous mega-size and complex civil infrastructures have been constructed worldwide. For the more precise construction and maintenance process management of these civil infrastructures, the application of a variety of smart sensor-based structural health monitoring (SHM) systems is required. The efficient management of both sensors and collected databases is also very important. Recently, several kinds of database access technologies using Quick Response (QR) code and Augmented Reality (AR) applications have been developed. These technologies provide software tools incorporated with mobile devices, such as smart phone, tablet PC and smart pad systems, so that databases can be accessed very quickly and easily. In this paper, an AR-based structural health monitoring technique is suggested for sensor management and the efficient access of databases collected from sensor networks that are distributed at target structures. The global positioning system (GPS) in mobile devices simultaneously recognizes the user location and sensor location, and calculates the distance between the two locations. In addition, the processed health monitoring results are sent from a main server to the user's mobile device, via the RSS (really simple syndication) feed format. It can be confirmed that the AR-based structural health monitoring technique is very useful for the real-time construction process management of numerous mega-size and complex civil infrastructures.