• Title/Summary/Keyword: Precise GPS Positioning

Search Result 274, Processing Time 0.023 seconds

Near-Real-Time Ship Tracking using GPS Precise Point Positioning (GPS 정밀단독측위 기법을 이용한 준실시간 선박 위치추적)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.783-790
    • /
    • 2010
  • For safety navigation of ships at sea, ships monitor their location obtained from Global Positioning Satellite System (GNSS). In this study, we computed near-real-time positions of a ship at sea using GPS Precise Point Positioning (PPP) technique and analyzed precision of the near-real-time positions. We conducted ship borne GPS observations in the south sea of Korea. To process the GPS data using PPP technique, GIPSY-OASIS (GPS Inferred Positioning System-Orbit Analysis and Simulation Software) developed by the Jet Propulsion Laboratory was used. Antenna phase center variations, ocean tidal loading displacements, and azimuthal gradients of the atmosphere were corrected or estimated as standard procedures of high-precision GIPSY-OASIS data processing. As a result, the precisions of near-real-time positions was ~1cm.

DEVELOPMENT OF REAL-TIME PRECISE POSITIONING ALGORITHM USING GPS L1 CARRIER PHASE DATA (GPS L1 반송파 위상을 이용한 실시각 정밀측위 알고리즘 구현)

  • 조정호;최병규;박종욱;박관동;임형철;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.377-384
    • /
    • 2002
  • We have developed Real-time Phase DAta processor(RPDAP) for GPS L1 carrie. And also, we tested the RPDAP's positioning accuracy compared with results of real time kinematic(RTK) positioning. While quality of the conventional L1 RTK positioning highly depend on receiving condition, the RPDAP can gives more stable positioning result because of different set of common GPS satellites, which searched by elevation mask angle and signal strength. In this paper, we demonstrated characteristics of the RPDAP compared with the L1 RTK technique. And we discussed several improvement ways to apply the RPDAP to precise real-time positioning using low-cost GPS receiver. With correcting the discussed weak points in new future, the RPDAP will be used in the field of precise real-time application, such as precise car navigation and precise personal location services.

Analysis about Seismic Displacements Based on GPS for Management of Natural Disaster (자연재난 관리를 위한 GPS 기반의 지진재해 분석)

  • Park, Joon-Kyu;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.311-318
    • /
    • 2011
  • On March 11, 2011, an 9.0-magnitude earthquake occurred near the northeastem coast Japanese. It was the largest earthquake that hit Japan since the beginning of modern seismometry. The earthquake occurred 179km east of the Sendai, Miyagi Prefecture, leaving about 27,000 of people confirmed dead, injured or missing due to the earthquake and tsunami. In this study, crustal Deformation in Mizusawa, Tsukuba and Usuda station were calculated based on GPS data in IGS station of Japan. The observation data were processed by precise point positioning and relative-positioning method using on-line GPS data processing services and a high precision scientific GPS/GLONASS data processing software. The coseismic displacements in IGS stations before and after the earthquake were analyzed using kinematic precise point positioning method, and the crustal deformation of the areas before and after the earthquake were precisely calculated using the relative-positioning method. The results of the study calculated precise coordination that the RMSE is maximum ${\pm}0.003m$, respectively and showed that Mizusawa station moved 2.6m southeast by the earthquake.

Development of the Kinematic Global Positioning System Precise Point Positioning Method Using 3-Pass Filter

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.269-274
    • /
    • 2012
  • Kinematic global positioning system precise point positioning (GPS PPP) technology is widely used to the several area such as monitoring of crustal movement and precise orbit determination (POD) using the dual-frequency GPS observations. In this study we developed a kinematic PPP technology and applied 3-pass (forward/backward/forward) filter for the stabilization of the initial state of the parameters to be estimated. For verification of results, we obtained GPS data sets from six international GPS reference stations (ALGO, AMC2, BJFS, GRAZ, IENG and TSKB) and processed in daily basis by using the developed software. As a result, the mean position errors by kinematic PPP showed 0.51 cm in the east-west direction, 0.31 cm in the north-south direction and 1.02 cm in the up-down direction. The root mean square values produced from them were 1.59 cm for the east-west component, 1.26 cm for the south-west component and 2.95 cm for the up-down component.

Development of Precise Point Positioning Solution for Detection of Earthquake and Crustal Movement (지진 및 지각변동 감지를 위한 정밀절대측위 솔루션 개발)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4587-4592
    • /
    • 2013
  • GPS is recognized the essential method to obtain the best result in the sphere of earth science that is setting of International Reference Frame, decision of the rotation coefficient about the earth rotation axis, detection of the crustal deformation, and observation of the diastrophism by high precision positioning except for navigation, geodetic survey and mapping. Therefore, in this study, it was attempted to build an expert service that enables non-experts to use high-precision GPS data processing. As a result, an Precise Point Positioning Solution that can maximize user convenience simply by entering the minimum required information for GPS data processing was developed, and the result of Precise Point Positioning Solution using GPS data provided by National Geographic Information Institute was compared with result of ITRF.

Accuracy Analysis of Precise Point Positioning Using Predicted GPS Satellite Orbits (GPS 예측궤도력을 이용한 정밀단독측위 정확도 분석)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.752-759
    • /
    • 2012
  • In this paper, near-real-time positioning accuracies of precise point positioning technique were analyzed using IGS predicted orbits. As a result, we could get the mean errors of 1~1.6 cm, standard deviation of 1~1.3cm from one year of GPS data. This results were similar level to positioning accuracy using the IGS rapid orbits. Positioning errors of >10cm showed 44% of observed days of orbital anomalies. When the orbital anomalies of the predicted orbits were shown, maximum error was 1.7 km, and maximum of mean errors was 308 m. From this study, we conclude that check and consideration were necessary before using the IGS predicted orbits.

Test Results of Dual-Use Wide-Area Differential GPS System for Extending the Operational Coverage

  • Kap Jin Kim;Jae Min Ahn
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.307-314
    • /
    • 2023
  • Wide-Area Differential Global Positioning System (WADGPS) is a system that operates a number of reference stations to provide correction information to improve the accuracy of GPS users, and it is available to service users within the area where the wide-area reference stations are installed. Recently, as positioning information has been used in various applications, the need for WADGPS for precise navigation in long-distance spaced areas where the wide-area reference stations cannot be installed has been raised. This paper tested the user navigation performance outside the wide-area reference stations of the WADGPS system, which serves both GPS Precise Positioning Service (PPS) and Standard Positioning Service (SPS) users. Static and dynamic tests were conducted using vehicles, and as a result, position accuracy improvement through WADGPS was confirmed even at points hundreds of kilometers outside the network area of the wide-area reference stations. Through this, the performance of the PPS/SPS correction system and the possibility of expanding the service area were confirmed.

A Study of GPS Precise Ephemeris Interpolation for Maritime Precise Positioning Applications (해양 정밀측위 활용을 위한 GPS 정밀위성궤도 보간 연구)

  • Cho, Deuk-Jae;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.699-702
    • /
    • 2009
  • Currently many vessels determine an overhead obstruction by a rule of thumb based on their draft for maritime navigation. Therefore they doesn't have a good overhead obstruction clearance because vertical position of vessels varies on time by tidal. As a result, it is occurred maritime accidents that the mainmast of vessels is bumped against overhead facilities. And disaster by global warming and rising sea levels have increased casualties. So we feel keenly the necessity of warning system for not an earthquake but disaster wave such a tsunami. This paper analyzes a precise GPS ephemeris for maritime precise positioning to solve these problems. The precise GPS ephemeris provided by International GNSS service gives a difficulty to real-time application because of its sample interval. This paper proposes an effective interpolation method for real-time application, and it analyzes an accuracy of precise GPS ephemeris through an interpolation method.

A Low-Cost Portable Precise Position Information Service System Using the DGPS Mechanism (DGPS 개념을 이용한 저가형 이동식 정밀위치 서비스 시스템)

  • Yeoun Hyo-Bum;Kang Yeong-Wook;Lee Ki-Dong
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.95-102
    • /
    • 2006
  • Nowadays, GPS is used widely, especially in case which needs precise position information, such as car navigation systems and various kinds of position measuring instruments in an outdoor environment. According to their applications, there are many kinds of GPS receivers with different costs and error rates. The maximum error range of the general-purpose GPS receiver is within 30m, though the error rate depends on receiving rate of signal and weather condition. RTK(Real-Time Kinematic) and DGPS(Differential Global Positioning System) have more precise accuracy than the general-purpose GPS. However end users can't afford use them because of their high price and large size of equipments. In order for the end user to obtain precise position information, it is important that GPS receivers has portability and low price. In this study, we introduce a new system that offers precise position information using the DGPS mechanism satisfying low cost and portability.