• 제목/요약/키워드: Precipitator

검색결과 235건 처리시간 0.024초

에어로졸 중화기의 나노 입자 하전 특성 (Nano Particle Charging Characteristics of Aerosol Charge Neutralizers)

  • 지준호;배귀남;황정호
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1489-1497
    • /
    • 2003
  • Aerosol charge neutralizers with various radioactive sources have been used to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. Measurements of highly charged particles are needed in air cleaning devices, e.g. electrostatic precipitator, bag filter with a pre-charger, and electrical cyclone. In this study, the particle charging characteristics of two different aerosol charge neutralizers were experimentally investigated for singly charged monodisperse particles and highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0,5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.2 to 2.5 L/min. The results show that the charge distribution of singly charged monodisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer is well agreed with the Boltzmann equilibrium charge distribution at an air flow rate of 0.3 L/min, However, it deviates from the equilibrium charge distribution when the air flow rates are 0.6, 1,0, and 1,5 L/min, On the other hands, the effect of air flow rate is insignificant for the $^{210}$ Po aerosol charge neutralizer. The non-equilibrium character in charge distribution of highly charged polydisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer greatly depends on the air flow rate, however it is insensitive to the air flow rate for the $^{210}$ Po aerosol charge neutralizer.

공침법에 의한 Fe2O3-CoO-Cr2O3-MnO2계 안료 연구 (Synthesis of the Fe2O3-CoO-Cr2O3-MnO2 pigments by co-precipitation method)

  • 최수녕;이병하
    • 한국결정성장학회지
    • /
    • 제17권6호
    • /
    • pp.264-271
    • /
    • 2007
  • 본 연구에서는 $Fe_2O_3-CoO-Cr_2O_3-MnO_2$계 색상의 무기안료를 공침법을 사용하여 합성하였다. 출발원료로는 $FeCl_3,\;CoCl_2,\;CrCl_3,\;MnCl_2$를 사용하였으며 침전제로는 2N-KOH를 사용하였다. $MnCl_2$는 10 mole%로 고정한 후 세 가지 원료로서 6가지 조성비를 만들어 안료를 합성하였다. 조합된 시료는 1.5시간 $1350^{\circ}C$에서 하소하였다. XRD, FT-IR, SEM 과 UV spectrophotometer를 사용하여 안료의 특성 분석을 하였다. 합성된 안료는 석회유, 석회 바륨유에 각각 6wt%씩 첨가하여 $1260^{\circ}C$ 산화소성, $1240^{\circ}C$ 환원 소성하였다. UV Spectrometer를 사용하여 색상분석을 한 결과는 black, bluish black, dark grayish green을 나타냈다.

Release of Ammonia Odor from AAFA (Ammonia Adsorbed Fly Ash) by Installation of NOx Reduction System

  • Kim, Jae-kwan;Park, Seok-un;Lee, Hyun-dong;Chi, Jun-wha
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.437-445
    • /
    • 2016
  • This paper discussed the effect of ammonia concentration adsorbed on fly ash for the ammonia emission as AAFA (Ammonia Adsorbed Fly Ash) produced from coal fired plants due to operation of NOx reduction technologies was landfilled with distilled or sea water at closed and open systems, respectively. Ammonia bisulfate and sulfates adsorbed on fly ash is highly water soluble. The pH of ammonium bisulfate and sulfate solution had significant effect on ammonia odor emission. The effect of temperature on ammonia odor emission from mixture was less than pH, the rate of ammonia emission increased with increased temperature when the pH conditions were kept at constant. Since AAFA increases the pH of solution substantially, $NH_3$ in the ash can release the ammonia order unless it is present at low concentration. $NH_4{^+}$ ion is unstable in fly ash and water mixtures of high pH at open system, which is changed to nitrite or nitrate and then released as ammonia gas. The proper conditions for < 20 ppm of ammonia concentration released from the AAFAs landfilled in ash pond were explored using an open system with sea water. It was therefore proposed that optimal operation to collect AAFA of less than 168 ppm ammonia at the electrostatic precipitator were controlled to ammonia slip with less than 5 ppm at SCR/SNCR installations, and, ammonia odor released from mixture of fly ash of 168 ppm ammonia with sea water under open system has about 20 ppm.

이단식 전기 집진 장치에서 하전부의 상대 위치 변화에 따른 집진 특성 (Precipitation Characteristics with the Relative Position of the Ionizer in a Two-stage Electrostatic Precipitator)

  • 임헌찬;이덕출
    • 전자공학회논문지T
    • /
    • 제35T권2호
    • /
    • pp.66-71
    • /
    • 1998
  • 이단식 소형 전기 집진 장치는 작업 환경에서 오존 발생이 극히 적은 정극성 코로나를 널리 사용하고 있지만 이에 관한 과학적 연구보고는 적은 실정이다. 그러므로 이단식 소형전기 집진 장치의 기초 복성에 관하여 연구하였다. 모델 이단식 전기 집진 장치는 이론적 해석이 쉽고 하던부 집진부의 상대 위치를 이동시킬 수 있는 구조로 제작하여 다음의 실험적 결론을 얻었다. 하전부의 코로나 방전은 집진부 전극의 전체 강도에 영향을 받고, 집진부 후방에서의 입자 농도는 집진부의 고압전극과 접지전극 사이에서 크게 변화하고 있다. 집진효율은 집진부의 고압전극 후방이 집진전극 후방보다 높다. 측정 범위의 전 구간에서 입자농도를 적분하여 계산한 종합 접진 효율로부터 하전부의 방전극 바로 뒤에 집진부의 고압전극이 위치하는 구조가 접지전극이 위치하는 구조보다 높은 효율을 보이고 있다. 이것은 하전부와 접진부의 상대적 위치 관계가 집진 효율 특성에 영향을 미치고 있음을 알 수 있다.

  • PDF

High Resistivity Characteristics of the Sinter Dust Generated from the Steel Plant

  • Lee, Jae-Keun;Hyun, Ok-Chun;Lee, Jung-Eun;Park, Sang-Deok
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.630-638
    • /
    • 2001
  • The electrical resistivity of sinter dusts generated from the steel industry and coal fly ash from the coal power plant has been investigated using the high voltage conductivity cell based on JIS B 9915 as a function of temperature and water content. Dust characterization such as the chemical composition, size distribution, atomic concentration, and surface structure has been conducted. Major constituents of sinter dusts were Fe$_2$O$_3$(40∼74.5%), CaO (6.4∼8.2%), SiO$_2$(4.1∼6.0%), and unburned carbon (7.0∼14.7%), while the coal fly ash consisted of mainly SiO$_2$(51.4%), Al$_2$O$_3$(24.1%), and Fe$_2$O$_3$(10.5%). Size distributions of the sinter dusts were bi-modal in shape and the mass median diameters (MMD) were in the range of 24.7∼137㎛, whereas the coal fly ash also displayed bi-modal distribution and the MMD of the coal fly ash was 35.71㎛. Factors affecting resistivity of dusts were chemical composition, moisture content, particle size, gas temperature, and surface structure of dust. The resistivity of sinter dusts was so high as 10(sup)15 ohm$.$cm at 150$\^{C}$ that sinter dust would not precipitate well. The resistivity of the coal fly ash was measured 1012 ohm$.$cm at about 150$\^{C}$. Increased water contents of the ambient air lowered the dust resistivity because current conduction was more activated for absorption of water vapor on the surface layer of the dust.

  • PDF

Effects of Different Precursors on the Surface Mn Species Over $MnO_x/TiO_2$ for Low-temperature SCR of NOx with $NH_3$

  • Kim, Jang-Hoon;Yoon, Sang-Hyun;Lee, Hee-Soo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.29.1-29.1
    • /
    • 2011
  • The selective catalytic reduction (SCR) of $MnO_x$ with $NH_3$ is an effective method for the removal of $MnO_x$ from stationary system. The typical catalyst for this method is $V_2O_5-WO_3(MoO_3)/TiO_2$, caused by the high activity and stability. However, This catalyst is active within $300{\sim}400^{\circ}C$ and occurs the pore plugging from the deposition of ammonium sulfate salts on the catalysts surface. It needs to locate the SCR unit after the desulfurizer and electrostatic precipitator without reheating of the flue gas as well as deposition of dust on the catalyst. The manganese oxides supported on titania catalysts have attracted interest because of its high SCR activity at low temperature. The catalytic activity of $MnO_x/TiO_2$ SCR catalyst with different manganese precursors have investigated for low-temperature SCR in terms of structural, morphological, and physico-chemical analyses. The $MnO_x/TiO_2$ were prepared from three different precursors such as manganese nitrate, manganese acetate (II), and manganese acetate (III) by the sol-gel method and then it calcinated at $500^{\circ}C$ for 2 hr. The structural analysis was carried out to identify the phase transition and the change intensity of catalytic activity by various manganese precursors was analyzed by FT-IR and Raman spectroscopy. These different precursors also led to various surface Mn concentrations indicated by SEM. The Mn acetate (III) tends to be more suppressive the crystalline phase (rutile), and it has not only smaller particle size, but also better distributed than the others. It was confirmed that the catalytic activity of MA (III)-$MnO_x/TiO_2$ was the highest among them.

  • PDF

초미세입자 제거를 위한 고온용 나노 세라믹 필터 개발 (Development of Nano Ceramic Filter for the Removal of Ultra Fine Particles)

  • 김종원;안영철;이병권;정현재
    • 설비공학논문집
    • /
    • 제22권1호
    • /
    • pp.13-20
    • /
    • 2010
  • Airborne particulate matters have two modes of size distributions of coarse mode and fine mode. The coarse mode which is formed by break down mechanism of large particles has a peak around the $100\;{\mu}m$, and the fine mode formed by condensation and build up mechanism of evaporated vapors has a peak at several ${\mu}m$. The coarse mode particles can be removed easily by conventional collecting equipments such as a cyclone, an electrostatic precipitator, and a filter, however the fine mode particles can not be collected easily. Usually the fine mode particles are generated in the high temperature conditions especially through boilers and incinerators, so the high efficient and temperature filter is essential for the filtration. In this study, a nano ceramic filter for the removal of fine particles in the high temperature is developed and tested for several characteristics. The nano ceramic filter has double layer of micro and nano structure and the pressure drop and the filtration efficiency for $0.31\;{\mu}m$ at 3 cm/s are 15.45 mmAq, and 96.75%, respectively. The thermal conductivity is $0.038\;W/m{\cdot}K$, and the coefficient of water vapor permeability is $3.63\;g/m^2{\cdot}h{\cdot}mmHg$. It is considered that the sensible heat exchange rate is very poor because the low thermal conductivity but it has high potential to exchange latent heat.

영월 화력발전소에서 배출된 석탄회의 광물학적, 지화학적 특성 (Mineralogical and Geochemical Characteristics of PFA (Pulverised Fuel Ash) from Yongwol Power Plant)

  • 이규호;최선경;문희수;이상훈
    • 자원환경지질
    • /
    • 제30권5호
    • /
    • pp.443-450
    • /
    • 1997
  • The main purpose of this study is to investigate mineralogical and chemical changes during natural weathering, and assess the mobility of major and trace elements. Yongwol power plant utilize anthracite coal which is mainly composed of illite, kaolinite, pyrophyllite and quartz in mineralogy. Coal and coal-derived fly ash samples were sampled by the electrostatic precipitator in Yongwol coal-fired power plant in Korea. Short term weathered fly ash were also collected in ash disposal mound, and two profile soil samples were taken from an ash near the power plant. Amorphous materials are the main component of the fly ash, and mullite, quartz, magnetite and heamatite are present in all coal-derived fly ash. In chemistry, Si and Al are the most abundant elements of the total content. The ash samples were fractionated into upper $90{\mu}m$ and under $45{\mu}m$ size. Finer particles show higher concentrations in metal contents including Co, Cr, Cu, Ni, V, Zn and Pb. Concentration of Zn and Pb are nearly 4 times higher concentration in the finer particles. For the profile samples, the concentrations of $SiO_2$, $Na_2O$, MgO and $K_2O$ generally show increasing trends with depth, whereas those of $Fe_2O_3$ and $TiO_2$ appear to decrease with depth. Content of MnO does not show any specific depth trend. For the trace elements, Co, Cu, Ni and V show increasing concentrations with depth.

  • PDF

석탄화력발전시설에서의 하이브리드 집진기 적용 시 수은화합물 제어성능 평가 (Performance of Removal Efficiency for Mercury Compounds using Hybrid Filter System in a Coal-fired Power Plant)

  • 성진호;장하나;백승기;정법묵;서용칠;강연석;이철규
    • 한국대기환경학회지
    • /
    • 제30권3호
    • /
    • pp.261-269
    • /
    • 2014
  • This study focused on the performance of the newly developed hybrid filter system to capture fine particulate matter and mercury compounds in a coal-fired power plant. The hybrid filter system combining bag-filter and electrostatic precipitator had been developed to remove fine particulate matter. However, it would have a good performance to control mercury compounds as well. In Hybrid filter capture system, the total removal efficiency of total mercury compounds consisting of particulate mercury ($Hg_p$), oxidized mercury ($Hg^{2+}$), and elemental mercury ($Hg^0$) was 66.2%. The speciation of mercury compounds at inlet and outlet of Hybrid filter capture system were 1.3% and 0% of $Hg_p$, 85.2% and 68.1% of $Hg^0$, and 13.5% and 31.9% of $Hg^{2+}$, respectively. In hybrid filter capture system injected with 100% of flue-gas, the removal efficiency of total mercury was calculated to increase to 93.5%.

Group Separation of Water-soluble Organic Carbon Fractions in Ash Samples from a Coal Combustion Boiler

  • Park, Seung-Shik;Jeong, Jae-Uk;Cho, Sung-Yong
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권1호
    • /
    • pp.67-72
    • /
    • 2012
  • The chemical characterization of water-soluble organic carbon in ash emitted from a coal combustion boiler has not been reported yet. A total of 5 ash samples were collected from the outlet of an electrostatic precipitator in a commercial 500 MW coal-fired power plant, with their chemical characteristics investigated. XAD7HP resin was used to quantify the hydrophilic and hydrophobic water-soluble organic carbons (WSOC), which are the fractions of WSOC that penetrate and remain on the resin column, respectively. Calibration results indicate that the hydrophilic fraction includes aliphatic dicarboxylic acids and carbonyls (<4 carbons), amines and saccharides, while the hydrophobic fraction includes aliphatic dicarboxylic acids (>4-5 carbons), phenols, aromatic acids, cyclic acid and humic acid. The average mass of the WSOC in the ash samples was found to depend on the bituminous coal type being burned, and ranged from 163 to 259 ${\mu}g$ C/g of ash, which corresponds to 59-96 mg C of WSOC/kg of coal combusted. The WSOC mass accounted for 0.02-0.03 wt% of the used ash sample mass. Based on the flow rate of flue gas produced from the combustion of the blended coals in the 500 MW coal combustion boiler, it was estimated that the WSOC particles were emitted to the atmosphere at flow rates of 4.6-7.2 g C/hr. The results also indicated that the hydrophilic WSOC fraction in the coal burned accounted for 64-82% of the total WSOC, which was 2-4 times greater than the mass of the hydrophobic WSOC fraction.