• Title/Summary/Keyword: Precipitation types

Search Result 292, Processing Time 0.038 seconds

Estimation of the National Burden of Disease and Vulnerable Population Associated with Natural Disasters in Korea: Heavy Precipitation and Typhoon

  • Han, Hyun-Jin;Kim, Jong-Hun;Chung, Soo-Eun;Park, Jae-Hyun;Cheong, Hae-Kwan
    • Journal of Korean Medical Science
    • /
    • v.33 no.49
    • /
    • pp.314.1-314.15
    • /
    • 2018
  • Background: Despite its growing significance, studies on the burden of disease associated with natural disasters from the perspective of public health were few. This study aimed at estimating the national burden of disease associated with typhoons and torrential rains in Korea. Methods: During the period of 2002-2012, 11 typhoons and five torrential rains were selected. Mortality and morbidities were defined as accentual death, injury and injury-related infection, and mental health. Their incidences were estimated from National Health Insurance Service. Case-crossover design was used to define the disaster-related excess mortality and morbidity. Disability-adjusted life years (DALYs) were directly assessed from excess mortality and morbidity. Results: The burden of disease from typhoons increased with the intensity, with 107.7, 30.6, and 36.6 DALYs per 100,000 per event for strong, moderate, and weak typhoons, respectively. Burden of disease from torrential rains were 56.9, 52.8, and 26.4 DALYs per 100,000 per event for strong, moderate, and weak episodes, respectively. Mental disorders contributed more years lived with disability (YLDs) than did injuries in most cases, but the injury-induced YLDs associated with strong typhoon and torrential rain were higher than those of lower-intensity. The elderly was the most vulnerable to most types of disaster and storm intensities, and males younger than 65 years were more vulnerable to a strong torrential rain event. Conclusion: The intensity of torrential rain or typhoon was the strongest determinant of the burden of disease from natural disasters in Korea. Population vulnerable may vary depending on the nature and strength of the disasters.

RNN-LSTM Based Soil Moisture Estimation Using Terra MODIS NDVI and LST (Terra MODIS NDVI 및 LST 자료와 RNN-LSTM을 활용한 토양수분 산정)

  • Jang, Wonjin;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.123-132
    • /
    • 2019
  • This study is to estimate the spatial soil moisture using Terra MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data and machine learning technique. Using the 3 years (2015~2017) data of MODIS 16 days composite NDVI (Normalized Difference Vegetation Index) and daily Land Surface Temperature (LST), ground measured precipitation and sunshine hour of KMA (Korea Meteorological Administration), the RDA (Rural Development Administration) 10 cm~30 cm average TDR (Time Domain Reflectometry) measured soil moisture at 78 locations was tested. For daily analysis, the missing values of MODIS LST by clouds were interpolated by conditional merging method using KMA surface temperature observation data, and the 16 days NDVI was linearly interpolated to 1 day interval. By applying the RNN-LSTM (Recurrent Neural Network-Long Short Term Memory) artificial neural network model, 70% of the total period was trained and the rest 30% period was verified. The results showed that the coefficient of determination ($R^2$), Root Mean Square Error (RMSE), and Nash-Sutcliffe Efficiency were 0.78, 2.76%, and 0.75 respectively. In average, the clay soil moisture was estimated well comparing with the other soil types of silt, loam, and sand. This is because the clay has the intrinsic physical property for having narrow range of soil moisture variation between field capacity and wilting point.

Classification of the Damaged Areas in the DMZ (Demilitarized zone) by Location Environments (입지 환경 인자를 이용한 DMZ 남측 철책선 주변 훼손지 유형화)

  • Bak, Gi-Ppeum;Kim, Sang-Jun;Lee, Ah-Young;Kim, Dong-Hak;Yu, Seung-Bong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.71-84
    • /
    • 2021
  • Restoration of DMZ has come up with the discussion on the peaceful use of the DMZ and the conservation plan of the army. In this study, we aim to identify soil characteristics of 108 sites to figure out environmental conditions around the iron fence of DMZ where vegetation has been removed repeatedly. Based on the soil characteristics and climate variables, hierarchy clustering was performed to categorize sites. As a result, we categorized 108 sites into 4 types: middle elevation region, lowland, East coast lowland, other areas. Group of 'other area' is only high in nutrient and clay proportion. Others are in igneous rock and metamorphic rocks with a high proportion of sand and lower nutrients than the optimum range of growth in Korean forest soil. The middle elevation region has a high altitude, low temperature. The east coast lowland has a high temperature in January and low precipitation. The lowland has a low altitude and high temperature. This category provides the environmental condition around the DMZ fence and can be used to select plants for restoration. The restoration project around the DMZ iron fence should satisfy the security of military plans, which means that functional restoration is prior to ecological restoration such as vegetation management under a power line. Additionally, improvement of soil quality and surface stability through restoration projects is required to enhance the resilience of the ecosystem in DMZ.

Reviewing of Integrated Assessment of the Impacts of Climate Change and Sea-Level Rise on Agricultural Sector (기후변화·해수면 상승에 따른 농업부문 통합평가 사례연구 비교분석 및 개선방안)

  • Ahn, SoEun;Oh, SeoYun
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.299-314
    • /
    • 2016
  • The aim of this paper is to review integrated assessment studies conducted to address the impacts of climate change sea-level rise on agricultural sector and to derive suggestions for improving the integrated assessment process to assist decision-makers in establishing climate change adaptation policy. We collect integrated assessment studies which are based on the impact-pathway analysis, compare their step-by-step procedures and identify main factors addressed in each step. The assessment process is typically carried out in the sequence of scenario development, determination of assessment scope, physical impact assessment, economic analysis and synthesis of the outcomes from each step. We identify two types of integrated assessment. The first one examines the impacts of changes in temperature and/or precipitation on the crop-cultivation patterns and/or agricultural productivity and resulting economic effects on agricultural sector. The other investigates the impacts of sea-level rise on land use/coverage and resulting economic damages in terms of land-value loss where the effects on agriculture is treated as one sector among others. To enhance integrated assessment, we suggest that 1) scenarios need to incorporate the effects of climate change and sea-level rise simultaneously, 2) scope of the assessment needs to be extended to include ecosystem services as well as crop production, 3) social and cultural aspects need to be considered in addition to economic analysis, and 4) synthesis of the outcomes from each step should be able to combine quantitative as well as qualitative information.

Influence of Sulfate on Thermodynamic Modeling of Hydration of Alkali Activated Slag (알칼리 활성 슬래그의 열역학적 수화모델링에 대한 황산염의 영향)

  • Lee, Hyo Kyoung;Park, Sol-Moi;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • The present study investigated hydration of alkali activated slag incorporating sulfate as a form of anhydrite by employing thermodynamic modeling using the Gibbs free energy minimization approach. Various parameters were evaluated in the thermodynamic calculations, such as presence of sulfide, precipitation/dissolution of AFt/AFm phase, and the effect of oxic condition on the predicted reaction. The calculations suggested no significant difference in the void volume and chemical shrinkage, which might influence the performance of the mixtures, in spite of various changes of the parameters. Although the types of hydration products and their amount varied according to the input conditions, their variations were smaller range than that induced by water-to-binder ratio. Moreover, it did not affect the amount of C-(N-)A-S-H which was the most important hydration product.

Long-term Estimation and Mitigation of Urban Development Impact on Watershed Hydrology (도시개발로 인한 장기 수문변화 예측과 저감 방안)

  • Jeon, Ji-Hong;Jang, Joo Bok;Kim, Tae-Dong;Choi, Donghyuk
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.419-428
    • /
    • 2018
  • This study is aimed at estimating and mitigating the impact of urban development on watershed hydrology for new town experienced with dramatical change of land use from rural to urban. The climate change scenario, representative concentration pathway (RCP), revealed direct response of runoff depth to precipitation, which increased until year 2100. The types of areas for urban use in addition to climate change affected the efficiencies of bioretention, applied as a low impact development (LID). Combining different areas for urban use suggested that a possible approach to mitigate the urban development impact on watershed hydrology by supplementing captured rainfall potential from area to area and attenuating peak discharge and retarding its time of concentration.

Variations in Catches of Fisheries according to the Climate Change of Korea (우리나라에서 기후 변화에 따른 어업 생산량의 변동)

  • Kim, Jong-Gyu
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.194-201
    • /
    • 2022
  • Purpose: This study investigated the relationship between climate factors and the catches in Korean offshore fisheries in recent three decades (1981 to 2010). Method: This study focused on seven types of fish species preferred in Korean cuisine. In the study, 10-year moving averages were used so that long-term trends could be easily identified. Results: Both air temperature and sea surface temperature (SST) on the coast of Korea rose in the period (p < 0.05). The rise in SST was significantly correlated with the rise in air temperature (p < 0.05), but not with precipitation. In the 2010s compared to in the 1981, catches of anchovy and squid greatly increased (p < 0.05), while catches of Alaska / walleye pollock has been almost extinct over the past 30 years. As such, cold-water fish species decreased or disappeared, and their fishing ground was replaced by warm-water fish species. Conclusions: These findings indicate that fish species caught in offshore fisheries of Korea have changed due to climate change, especially warming. This suggests that the warming of the Korean Peninsula may have a significant impact on the supply of fishery products and food security to Koreans in the near future.

Comparison of Soil Permeability and Time-Series Variation of Soil Moisture in Areas with Different Land Use in an Agricultural Region of Gangwon Province, Korea (강원도 농촌지역에서 토지이용에 따른 토양수분의 시계열적 변동 특성 및 토양 투수성 비교)

  • Lee, Minwook;Lee, Sungbeen;Lee, Jin-Yong
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.483-498
    • /
    • 2022
  • Soil moisture is defined as water in the pores of the soil's unsaturated zone, and it is closely related to various hydrological processes. This study aims to provide meaningful data by identifying factors affecting soil moisture through comparing soil moisture content and soil permeability in a study area covering six different land use types in an agricultural region that is highly dependent on groundwater. We conduct auto-correlation analysis, spectral density analysis, and cross-correlation analysis using time-series data. Soil moisture content shows to have weak auto-correlation and memory effects, and precipitation appears to have a substantial influence on soil moisture content. Saturation hydraulic conductivity does not vary markedly with changing land use, and instead appears to be affected by the inhomogenous soil structure.

Implementation of real-time water level prediction system using LSTM-GRU model (LSTM-GRU 모델을 활용한 실시간 수위 예측 시스템 구현)

  • Cho, Minwoo;Jeong, HanGyeol;Park, Bumjin;Im, Haran;Lim, Ine;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.216-218
    • /
    • 2022
  • Natural disasters caused by abnormal climates are continuously increasing, and the types of natural disasters that cause the most damage are flood damage caused by heavy rains and typhoons. Therefore, in order to reduce flood damage, this paper proposes a system that can predict the water level, a major parameter of flood, in real time using LSTM and GRU. The input data used for flood prediction are upstream and downstream water levels, temperature, humidity, and precipitation, and real-time prediction is performed through the pre-trained LSTM-GRU model. The input data uses data from the past 20 hours to predict the water level for the next 3 hours. Through the system proposed in this paper, if the risk determination function can be added and an evacuation order can be issued to the people exposed to the flood, it is thought that a lot of damage caused by the flood can be reduced.

  • PDF

Changes in Methane Production in Coastal Mud Flat under Different Temperature and Salinity (온도 증가와 염도 감소에 따른 갯벌토양에서 메탄발생량의 변화)

  • Kim, Young Joo;Jung, Soo Hyun;Kang, Ho jeong
    • Journal of Wetlands Research
    • /
    • v.8 no.4
    • /
    • pp.41-47
    • /
    • 2006
  • Global climatic changes are expected to influence various biogeochemical processes in wetland ecosystems. In particular, coastal mud flat is anticipated to be affected directly by temperature increase as well as indirectly by a sea level rise and changes in precipitation. This study aimed to determine changes in methane production under different temperature and salinity by employing a laboratory-scale manipulation experiment. Soil samples were collected from a mud flat in Dong-Gum Kang-Hwa island in winter and two types of experiments were conducted. In the first experiment soil samples at 0-5 cm, 5-10 cm depth were incubated under same salinity with pore water and diluted salinity to 50 % of natural condition for 20 days and methane production was measured every other days. In the second experiment, soil samples at 5-10 cm depth were incubated in different temperature, $5^{\circ}C$ and $15^{\circ}C$, under same salinity conditions with first experiment for 31 days and methane production was measured. Results of the first experiment revealed that higher amount of methane was produced at 5-10 cm depth, and salinity effect was predominant at the end of the experiment. The second experiment showed that methane production was higher in $15^{\circ}C$ than $5^{\circ}C$. In addition, methane production was higher when sea water diluted to 50 % compared to control. Global climatic changes are expected to influence various biogeochemical processes in wetland ecosystems. In particular, coastal mud flat is anticipated to be affected directly by temperature increase as well as indirectly by a sea level rise and changes in precipitation. This study aimed to determine changes in methane production under different temperature and salinity by employing a laboratory-scale manipulation experiment. Soil samples were collected from a mud flat in Dong-Gum Kang-Hwa island in winter and two types of experiments were conducted. In the first experiment soil samples at 0-5 cm, 5-10 cm depth were incubated under same salinity with pore water and diluted salinity to 50 % of natural condition for 20 days and methane production was measured every other days. In the second experiment, soil samples at 5-10 cm depth were incubated in different temperature, $5^{\circ}C$ and $15^{\circ}C$, under same salinity conditions with first experiment for 31 days and methane production was measured. Results of the first experiment revealed that higher amount of methane was produced at 5-10 cm depth, and salinity effect was predominant at the end of the experiment. The second experiment showed that methane production was higher in $15^{\circ}C$ than $5^{\circ}C$. In addition, methane production was higher when sea water diluted to 50 % compared to control. These results suggest that methane production is highly influenced by changes in temperature and salinity in coastal mud flat. And that global climatic change may induce biological feedback by affecting production of another greenhouse gas, namely methane from coastal mud flat.

  • PDF