• Title/Summary/Keyword: Precipitation trend

Search Result 272, Processing Time 0.033 seconds

Recent Changes in Summer Precipitation Characteristics over South Korea (최근 한반도 여름철 강수특성의 변화)

  • Park, Chang-Yong;Moon, Ja-Yeon;Cha, Eun-Jeong;Yun, Won-Tae;Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.3
    • /
    • pp.324-336
    • /
    • 2008
  • This paper examines the recent changes of summer precipitation in the aspect of temporal and spatial features using long-term($1958{\sim}2007$) observed station data over South Korea. tong-term mean summer precipitation has revealed two precipitation peaks during summer(June to September); one is the Changma as the first peak, and the other is the post-Changma as the second peak. During the Changma period, the spatial distribution of the maximum precipitation areas is determined by the prevailing southwesterlies and the quasi-stationary front, which results in large amount of precipitation at the windward side of mountain regions over South Korea. However during the post-Changma period, the spatial distribution of the maximum precipitation areas is determined by the lower tropospheric circulation flows from the west and the southeast around the Korean peninsula, and the weather phenomena such as Typhoons, convective instability, and cyclones which are originated from the Yangtze river. The larger amount of precipitation is founded on the southern coastal region and mountain and coastal areas in Korea during the second peak. Time series of total summer precipitation shows a steady increase and the increasing trend is more obvious during the recent 10 years. Decadal variation in summer precipitation indicates a large increase of precipitation, especially in the recent 10 years both in the Changma and the post-Changma period. However, the magnitude of change and the period of the maximum peak presents remarkable contrasts among stations. The most distinct decadal change occurs at Seoul, Busan, and Gangnueng. The precipitation amount is increasing significantly during the post-Changma period at Gangnueng, while the precipitation increases in the period between two maximum precipitation peaks during summer at Seoul and Busan.

Error analysis of areal mean precipitation estimation using ground gauge precipitation and interpolation method (지점 강수량과 내삽기법을 이용한 면적평균 강수량 산정의 오차 분석)

  • Hwang, Seokhwan;Kang, Narae;Yoon, Jung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1053-1064
    • /
    • 2022
  • The Thiessen method, which is the current area average precipitation method, has serious structural limitations in accurately calculating the average precipitation in the watershed. In addition to the observation accuracy of the precipitation meter, errors may occur in the area average precipitation calculation depending on the arrangement of the precipitation meter and the direction of the heavy rain. When the watershed is small and the station density is sparse, in both simulation and observation history, the Thiessen method showed a peculiar tendency that the average precipitation in the watershed continues to increase and decrease rapidly for 10 minutes before and after the peak. And the average precipitation in the Thiessen basin was different from the rainfall radar at the peak time. In the case where the watershed is small but the station density is relatively high, overall, the Thiessen method did not show a trend of sawtooth-shaped over-peak, and the time-dependent fluctuations were similar. However, there was a continuous time lag of about 10 minutes between the rainfall radar observations and the ground precipitation meter observations and the average precipitation in the basin. As a result of examining the ground correction effect of the rainfall radar watershed average precipitation, the correlation between the area average precipitation after correction is rather low compared to the area average precipitation before correction, indicating that the correction effect of the current rainfall radar ground correction algorithm is not high.

A Model to Identify Expeditiously During Storm to Enable Effective Responses to Flood Threat

  • Husain, Mohammad;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.23-30
    • /
    • 2021
  • In recent years, hazardous flash flooding has caused deaths and damage to infrastructure in Saudi Arabia. In this paper, our aim is to assess patterns and trends in climate means and extremes affecting flash flood hazards and water resources in Saudi Arabia for the purpose to improve risk assessment for forecast capacity. We would like to examine temperature, precipitation climatology and trend magnitudes at surface stations in Saudi Arabia. Based on the assessment climate patterns maps and trends are accurately used to identify synoptic situations and tele-connections associated with flash flood risk. We also study local and regional changes in hydro-meteorological extremes over recent decades through new applications of statistical methods to weather station data and remote sensing based precipitation products; and develop remote sensing based high-resolution precipitation products that can aid to develop flash flood guidance system for the flood-prone areas. A dataset of extreme events has been developed using the multi-decadal station data, the statistical analysis has been performed to identify tele-connection indices, pressure and sea surface temperature patterns most predictive to heavy rainfall. It has been combined with time trends in extreme value occurrence to improve the potential for predicting and rapidly detecting storms. A methodology and algorithms has been developed for providing a well-calibrated precipitation product that can be used in the early warning systems for elevated risk of floods.

Long-term Trend of Atmospheric Concentrations of Fine Particles in Chuncheon, Korea (춘천시 미세먼지 농도의 장기변동 추세)

  • Yang, Ji-Hae;Kim, Sung-Rak;Jung, Jin-Hee;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.494-503
    • /
    • 2011
  • Fine particles ($PM_{2.5}$) were collected and analyzed from December 2005 through December 2009 in Chuncheon, Korea to investigate the long-term trend of $PM_{2.5}$ concentrations. Also $PM_{10}$ concentrations were collected from Environmental Monitoring System operated by Ministry of Environment. Average concentrations of $PM_{2.5}$ and $PM_{10}$ were 30.5 and 58.2 ${\mu}g/m^3$, respectively. Both $PM_{2.5}$ and $PM_{10}$ were significantly affected by meteorological factors including wind speed, wind direction and precipitation. They generally decreased as wind speed increased (p=0.000), and increased when there was a prevailing westerly wind. Low concentrations of $PM_{2.5}$ were observed during rainy days while high concentrations were shown when fog, mist and/or haze occurred.

Characteristics of Pollutant Loads in Saemangeum Watershed Using HSPF (논문 - HSPF를 이용한 새만금 유역의 오염부하 특성)

  • Jung, Ji-Yeon;Shin, Yu-Ri;Choi, Jung-Hoon;Choi, In-Kyu;Yoon, Chun-Gyeong;Son, Yeong-Kwon
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.54-65
    • /
    • 2011
  • This study was performed to analyze the influence of pollutant loads characteristics on the point and non-point sources in Saemangeum watershed area using Hydrological Simulation Program, Fortran (HSPF). The simulation items were flow, BOD, T-N, and T-P(2007~2010). The pollutant loads trend reflects the precipitation. Specifically, the point source loads were almost constant, but the non-point source loads were influenced in the precipitation. It was found that the effect of non-point source is larger than point source. The water quality had a clear trend by the season. However, pollutant loads did not show distinct seasonal changes. The reason is that the pollutant concentration is diluted by the increased flow at summer season. Therefore, it is important to control the non-point source in order to manage water quality in the region. For the management of Saemangeum lake, it is need to control of supplied pollutant loads from Saemangeum watershed.

  • PDF

Characterization of Ozone Distributions in Pohang: Measurement Data during 2002~2006 (포항지역 오존농도의 분포 특성: 2002~2006년 측정자료)

  • Lim, Ho-Jin;Lee, Yong-Jik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.50-62
    • /
    • 2011
  • Temporal trends and spatial distributions of ozone concentrations in Pohang were investigated using data measured at 4 air quality monitoring stations (i.e., Daedo, Jukdo, Jangheung, and Desong) during 2002-2006. The monthly mean ozone concentrations were highest during April and June and decreased during July and August, which follows the typical trend in the Northeast Asia region. The high springtime ozone concentration might have been strongly influenced by the enhanced photochemical ozone production of accumulated precursors during the winter under increased solar radiations. In July and August, ozone levels were decreased by frequent and severe precipitation that caused lower mean monthly solar radiation and efficient wash-out of ozone precursors. This suggests that precipitation is extremely beneficial in the aspect of ozone pollution control. High ozone concentrations exceeding 80ppb dominantly occurred in May and June during the late afternoon between 16:00~17:00. Ozone concentrations were higher in Jangheung and Daesong relative to Daedo and Jukdo, whereas total oxidants $(O_3+NO_2)$ were higher in Jangheung and Daedo. In the suburban area of Daesong, ozone concentrations seem to be considerably higher than those in urban sites of Daedo and Jukdo due to lower ozone loss by NO titration with lower local NO level.

Assessment of Near-Term Climate Prediction of DePreSys4 in East Asia (DePreSys4의 동아시아 근미래 기후예측 성능 평가)

  • Jung Choi;Seul-Hee Im;Seok-Woo Son;Kyung-On Boo;Johan Lee
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.355-365
    • /
    • 2023
  • To proactively manage climate risk, near-term climate predictions on annual to decadal time scales are of great interest to various communities. This study evaluates the near-term climate prediction skills in East Asia with DePreSys4 retrospective decadal predictions. The model is initialized every November from 1960 to 2020, consisting of 61 initializations with ten ensemble members. The prediction skill is quantitatively evaluated using the deterministic and probabilistic metrics, particularly for annual mean near-surface temperature, land precipitation, and sea level pressure. The near-term climate predictions for May~September and November~March averages over the five years are also assessed. DePreSys4 successfully predicts the annual mean and the five-year mean near-surface temperatures in East Asia, as the long-term trend sourced from external radiative forcing is well reproduced. However, land precipitation predictions are statistically significant only in very limited sporadic regions. The sea level pressure predictions also show statistically significant skills only over the ocean due to the failure of predicting a long-term trend over the land.

Rainfall Trend Detection Using Non Parametric Test in the Yom River Basin, Thailand

  • Mama, Ruetaitip;Bidorn, Butsawan;Namsai, Matharit;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.424-424
    • /
    • 2017
  • Several studies of the world have analyzed the regional rainfall trends in large data sets. However, it reported that the long-term behavior of rainfall was different on spatial and temporal scales. The objective of this study is to determine the local trends of rainfall indices in the Yom River Basin, Thailand. The rainfall indices consist of the annual total precipitation (PRCTPOP), number of heavy rainfall days ($R_{10}$), number of very heavy rainfall days ($R_{20}$), consecutive of dry days (CDD), consecutive of wet days (CWD), daily maximum rainfall ($R_{x1}$), five-days maximum rainfall ($R_{x5}$), and total of annual rainy day ($R_{annual}$). The rainfall data from twelve hydrological stations during the period 1965-2015 were used to analysis rainfall trend. The Mann-Kendall test, which is non-parametric test was adopted to detect trend at 95 percent confident level. The results of these data were found that there is only one station an increasing significantly trend in PRCTPOP index. CWD, which the index is expresses longest annual wet days, was exhibited significant negative trend in three locations. Meanwhile, the significant positive trend of CDD that represents longest annual dry spell was exhibited four locations. Three out of thirteen stations had significant decreasing trend in $R_{annual}$ index. In contrast, there is a station statistically significant increasing trend. The analysis of $R_{x1}$ was showed a station significant decreasing trend at located in the middle of basin, while the $R_{x5}$ of the most locations an insignificant decreasing trend. The heavy rainfall index indicated significant decreasing trend in two rainfall stations, whereas was not notice the increase or decrease trends in very heavy rainfall index. The results of this study suggest that the trend signal in the Yom River Basin in the half twentieth century showed the decreasing tendency in both of intensity and frequency of rainfall.

  • PDF

Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices (기상학적, 농업학적, 수문학적 가뭄지수를 이용한 청미천 유역의 가뭄 분석)

  • Won, Kwang Jai;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.509-518
    • /
    • 2016
  • This study assessed drought of Cheongmicheon watershed from 1985 to 2015 according to duration. In order to quantify drought, we used meteorological and hydrological drought index. Standardized Precipitation Index(SPI) based on precipitation and Standardized Precipitation Evapotranspiration Index(SPEI) based on precipitation and evapotranspiration were applied as meteorological drought index. Palmer Drought Severity Index(PDSI) and Stream Drought Index(SDI) based on simulation of Soil and Water Assessment Tool(SWAT) model were applied as agricultural and hydrological drought index. As a result, in case average of extreme and averaged drought, 2014 and 2015 have the most vulnerable in all drought indices. Variation of drought showed different trend with regard to analysis of frequency. Also, the extreme and averaged drought have high correlation between drought indices excluding between PDSIs. However, each drought index showed different occurrence year and severity of drought Therefore, drought indices with various characteristics were used to analysis drought.

The Regionality of the Variation of Summer Precipitation in Korea (한국의 여름 강수량 변동의 지역성)

  • Kang, Man-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.3
    • /
    • pp.139-152
    • /
    • 2000
  • The regional characteristics of summer precipitation in Korea are analyzed with the data observed in 66 stations from 1973 to 1997, using the cluster analysis method. In the phenomena of summer precipitation, the rain-rich regions lie in the south coast region, the northern part of Kyonggi Province, and Yongdong region. The monthly precipitation is mostly influenced by Changma fronts and cyclons in June, Changma fronts in July, typhoons in August, and all of typhoons, Changma, and cyclons in September. The increasing and decreasing trends of the monthly precipitation are equally divided with regard to both regional groups and monthly distribution in the cluster analysis. Especially such trends are considerably clear in the rain-rich regions. The increasing tendency is predominant in the northern part of Kyonggi Province and Yongdong region, while the decreasing trend and the periodicity are noted in the south coast region and Cheju Island. The variation of the monthly precipitation is shown to be great in the rain-rich regions, while it is not much associated with the rain-scare regions. Also, the variation is the greatest in September, while the least variation is shown in July.

  • PDF