• Title/Summary/Keyword: Precipitation runoff

Search Result 427, Processing Time 0.022 seconds

Evaluation of Modeling Approach for Suspended Sediment Yield Reduction by Surface Cover Material using Rice Straw at Upland Field (모델링 기법을 이용한 밭의 볏짚 지표피복의 부유사량 저감효과 평가 방법)

  • Park, Youn Shik;Kum, Donghyuk;Lee, Dong Jun;Choi, Joongdae;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.108-114
    • /
    • 2016
  • Sediment-laden water leads to water quality degradation in streams; therefore, best management practices must be implemented in the source area to control nonpoint source pollution. Field monitoring was implemented to measure precipitation, direct runoff, and sediment concentrations at a control plot and straw-applied plot to examine the effect on sediment reduction in this study. A hydrology model, which employs Curve Number (CN) to estimate direct runoff and the Universal Soil Loss Equation to estimate soil loss, was selected. Twenty-five storm events from October 2010 to July 2012 were observed at the control plot, and 14 storm events from April 2011 to July 2011 at the straw-applied plot. CN was calibrated for direct runoff, and the Nash-Sutcliffe efficiency and coefficient of determination were 0.66 and 0.68 at the control plot. Direct runoff at the straw-applied plot was calibrated using the percentage direct runoff reduction. The estimated reduction in sediment load by direct runoff reduction calibration alone was acceptable. Therefore, direct runoff-sediment load behaviors in a hydrology model should be considered to estimate sediment load and the reduction thereof.

Long-term runoff characteristics on HRU variations of PRMS (PRMS의 HRU크기에 따른 장기유출특성)

  • Kim, Nam-Won;Kim, Hyeon-Jun;Park, Sun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.167-177
    • /
    • 2005
  • In this study, the PRMS(Precipitation and Runoff Modeling System), developed by USGS(United States Geological Survey), was applied to the Yongdam dam watershed in the Geum River basin. The efficiency for runoff simulation and spatial characteristics of PRMS were evaluated. The runoff changes with the changes of subcatchments and HRUs were estimated. As results, the size of the subcatchment and HRV did not significantly affect the runoff at the exit of watershed. Consequently, the spatial characteristic of PRMS was shown as lumped type rather than semi-distributed. The geographical input data for Yongdam dam watershed were converted to the USGS Input type, and the parameters were calibrated using Rosenbrock optimization method, validated with the observed runoff data. The PRMS showed resonable agreements in the long-term continuous runoff simulation, if the accuracy of observed data is ensured.

Analysis of Sediment Discharge by Long-term Runoff in Nakdong River Watershed using SWAT Model (SWAT 모형을 이용한 낙동강 유역의 장기 유출에 따른 유사량 분석)

  • Ji, Un;Kim, Tae-Geun;Lee, Eun-Jeong;Ryoo, Kyong-Sik;Hwang, Man-Ha;Jang, Eun-Kyung
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.723-735
    • /
    • 2014
  • Sediment discharge by long-term runoff in the Nakdong River watershed should be predicted for the maintenance and management of the Nakdong River newly changed by the four major river restoration project. The data establishment by the analysis of runoff and sediment discharge using the long-term watershed model is necessary to predict possible problems by incoming sediments and to prepare countermeasures for the maintenance and management. Therefore, sediment discharges by long-term runoff in the main points of the Nakdong River were calculated using SWAT(soil and water assessment tool) model and the relations and features between rainfall, runoff, and sediment discharge were analyzed in this study. As a result of sediment discharge calculation in the main points of the Nakdong River and tributaries, the sediment discharge at the outlet of the Naesung Stream was greater than the Jindong Station in the Lower Nakdong River from 1999 to 2008 except the years with low precipitation. The sediment discharge at the Nakdong River Estuary Barrage (NREB) was corresponding to 20% of the Jindong Station which is located about 80 km upstream from NREB.

THE CHEONGGYE-CHEON ESTORATION PROJECT AND HYDROLOGICAL CYCLE ANALYSIS

  • Kim, Hyeon-Jun;Yoon, Soo-Kil;Noh, Seong-Jin;Jang, Cheol-Hee
    • Water Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.179-187
    • /
    • 2005
  • This paper introduces the Cheonggye-cheon restoration project. The restoration project aims to revive the 600-year-old city of Seoul by recovering the historical heritage, guaranteeing safety from the deteriorated covering structures, creating the environment-friendly space, and revitalizing the neglected city centers. In order to understand the current hydrological cycle of the Chenggye-cheon watershed, the annual water balance of the region was calculated using the observed data including precipitation, runoff, water supply and sewage, and the changes in the groundwater level. The $2001{\sim}2002$ data were used to calibrate the WEP, and the $2003{\sim}2004$ data were used to verify the WEP. The calibration and validation results for the flood hydrograph how a reasonable value (at Majanggyo station, the R2 for the calibration period was 0.9, and that for the validation period was 0.7). According to the annual water balance of the Cheonggye-cheon watershed for 2004, the amount of surface runoff, infiltration, and evapotranspiration was 1,097mm, 216mm and 382mm, respectively, for an annual precipitation of 1,499mm. The application results from WEP, a distributed hydrological model, provide more detailed information of the watershed, and the model will be useful for improving the hydrological cycle in urban watershed.

  • PDF

Estiation of Effective Rainall for Daily Streamfiow (장기유출 해석을 위한 유효우량 추정)

  • 김태철;안병기;박승기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.116-124
    • /
    • 1989
  • Based on the theory of runoff equation proposed by SCS, the actual storage capacity(Sa) as a modified retention paramater was introduced to estimate the effective rainfall for the daily streamfiow analysis. During a storm, the actual storage capacity is limited by either soil water storage or infiltration rate as precipitation increases. Therefore, it was assumed that Sa is dependent on the baseflow before storm runoff(Qb) corresponding to soil water storage and the total amount of precipitation(P) corresponding to infiltration rate of a watershed. Effective rainfalls (Direct run-offs) estimate4 from SCS equation using Sa were compared with observed effective rainfalls at 10 watersheds in Geum river watershed boundary. 1. Regression equation for Sa was supposed Sa=Co+C$_1$XP+C$_2$X Qb Regression coefficients were highly significant at the level of 0. 01 and R$^2$ were 0.57 to 0.73. 2. The adjustment of coefficient of initial abstraction was made according to the storm size. It was adjusted to 025 for 30mm or less, 0.23 for 30 to 80mm, 0.20 for 80 to 200mm, and 0.1 for 200mm or more. 3. Regression equations between estimated and observed effective rainfall showed that slopes were 0.857 to 1.029 and R$^2$ were 0.779 to 0.989,

  • PDF

Stochastic disaggregation of daily rainfall based on K-Nearest neighbor resampling method (K번째 최근접 표본 재추출 방법에 의한 일 강우량의 추계학적 분해에 대한 연구)

  • Park, HeeSeong;Chung, GunHui
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.283-291
    • /
    • 2016
  • As the infrastructures and populations are the condensed in the mega city, urban flood management becomes very important due to the severe loss of lives and properties. For the more accurate calculation of runoff from the urban catchment, hourly or even minute rainfall data have been utilized. However, the time steps of the measured or forecasted data under climate change scenarios are longer than hourly, which causes the difficulty on the application. In this study, daily rainfall data was disaggregated into hourly using the stochastic method. Based on the historical hourly precipitation data, Gram Schmidt orthonormalization process and K-Nearest Neighbor Resampling (KNNR) method were applied to disaggregate daily precipitation into hourly. This method was originally developed to disaggregate yearly runoff data into monthly. Precipitation data has smaller probability density than runoff data, therefore, rainfall patterns considering the previous and next days were proposed as 7 different types. Disaggregated rainfall was resampled from the only same rainfall patterns to improve applicability. The proposed method was applied rainfall data observed at Seoul weather station where has 52 years hourly rainfall data and the disaggregated hourly data were compared to the measured data. The proposed method might be applied to disaggregate the climate change scenarios.

Application of the weather radar-based quantitative precipitation estimations for flood runoff simulation in a dam watershed (기상레이더 강수량 추정 값의 댐 유역 홍수 유출모의 적용)

  • Cho, Yonghyun;Woo, Sumin;Noh, Joonwoo;Lee, Eulrae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.155-166
    • /
    • 2020
  • In this study, we applied the Radar-AWS Rainrates (RAR), weather radar-based quantitative precipitation estimations (QPEs), to the Yongdam study watershed in order to perform the flood runoff simulation and calculate the inflow of the dam during flood events using hydrologic model. Since the Yongdam study watershed is a representative area of the mountainous terrain in South Korea and has a relatively large number of monitoring stations (water level/flow) and data compared to other dam watershed, an accurate analysis of the time and space variability of radar rainfall in the mountainous dam watershed can be examined in the flood modeling. HEC-HMS, which is a relatively simple model for adopting spatially distributed rainfall, was applied to the hydrological simulations using HEC-GeoHMS and ModClark method with a total of eight independent flood events that occurred during the last five years (2014 to 2018). In addition, two NCL and Python script programs are developed to process the radar-based precipitation data for the use of hydrological modeling. The results demonstrate that the RAR QPEs shows rather underestimate trends in larger values for validation against gauged observations (R2 0.86), but is an adequate input to apply flood runoff simulation efficiently for a dam watershed, showing relatively good model performance (ENS 0.86, R2 0.87, and PBIAS 7.49%) with less requirements for the calibration of transform and routing parameters than the spatially averaged model simulations in HEC-HMS.

Flood Runoff Simulation using Radar Rainfall and Distributed Hydrologic Model in Un-Gauged Basin : Imjin River Basin (레이더 강우와 분포형 수문모형을 이용한 미계측 유역의 홍수 유출모의: 임진강 유역)

  • Kim, Byung-Sik;Bae, Young-Hye;Park, Jung-Sool;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.52-67
    • /
    • 2008
  • Recently, frequent occurrence of flash floods caused by climactic change has necessitated prompt and quantitative prediction of precipitation. In particular, the usability of rainfall radar that can carry out real-time observation and prediction of precipitation behavior has increased. Moreover, the use of distributed hydrological model that enables grid level analysis has increased for an efficient use of rainfall radar that provides grid data at 1km resolution. The use of distributed hydrologic model necessitates grid-type spatial data about target basins; to enhance reliability of flood runoff simulation, the use of visible and precise data is necessary. In this paper, physically based $Vflo^{TM}$ model and ModClark, a quasi-distributed hydrological model, were used to carry out flood runoff simulation and comparison of simulation results with data from Imjin River Basin, two-third of which is ungauged. The spatial scope of this study was divided into the whole Imjin River basin area, which includes ungauged area, and Imjin River basin area in South Korea for which relatively accurate and visible data are available. Peak flow and lag time outputs from the two simulations of each region were compared to analyze the impact of uncertainty in topographical parameters and soil parameters on flood runoff simulation and to propose effective methods for flood runoff simulation in ungauged regions.

  • PDF

Rainfall and Runoff Characteristics on a Deciduous Forest Watershed in Mt. Ungsek, Sancheong (산청 웅석봉군립공원 내 활엽수림유역의 강수와 유출특성)

  • Kim, Ki-Dae;Choi, Hyung-Tae;Lim, Hong-Geun;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • This study aimed to investigate orographic precipitation and green dam (water conservation function) characteristics in a deciduous forest watershed in the region of Mt. Ungseok, Sancheong, Gyeongnam, South Korea. The rainfall and runoff of the watershed were monitored for six years (2011~2016) at the weather station and at the weir of the watershed, respectively. During the study period, the rainfall in the watershed (mountainous area) was larger than that of the meteorological station (flat area) nearest to the watershed. Besides, compared to the normal year (1981~2010), the rainfall has increased and the seasonal distribution of rainfall of the mountainous area has changed. These changes might have been caused by climate change. The runoff ratio was highest in spring, followed by winter, summer and fall, whilst the runoff was highest in summer, followed by spring, fall and winter. This difference seems to be due to the melting of snow in dry spring and intensive rainfall in summer. The total runoff in the watershed was calculated as $10,143.8ton{\cdot}ha{\cdot}yr^{-1}$.

The Assessment of Application of the Distributed Runoff Model in accordance with Rainfall Data Form (강우 자료 형태에 따른 분포형 유출 모형의 적용성 평가)

  • Choi, Yong Joon;Kim, Joo Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.252-260
    • /
    • 2010
  • The point rainfall measurements need to be converted to the areal rainfall by means of mean areal precipitation (MAP) estimation methods. And it is not appropriate to evaluate the areal rainfall with constant drift because of the geomorphological influences to rainfall field. Non-stationarity should be applied to the estimation of the areal rainfall, therefore, to consider these effects. Kriging methods with special functional would be a suitable tool in this case. Generalized covariance Kriging method is the most developed one among different Kriging methods. From this point of view this study performs the analysis of its applicability to distributed runoff model. For these purpose, distributed rainfall was created by Thiessen and Kriging method. And distributed rainfall of each method was applied into HyGIS-GRM. The result of applying, Runoff was different in the rainfall data form. Therefore, To apply Kriging method with physical meaning is that it is the useful method as distributed rainfall-runoff model.