• Title/Summary/Keyword: Precipitation over East Asia

Search Result 77, Processing Time 0.024 seconds

A Prediction of Precipitation Over East Asia for June Using Simultaneous and Lagged Teleconnection (원격상관을 이용한 동아시아 6월 강수의 예측)

  • Lee, Kang-Jin;Kwon, MinHo
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.711-716
    • /
    • 2016
  • The dynamical model forecasts using state-of-art general circulation models (GCMs) have some limitations to simulate the real climate system since they do not depend on the past history. One of the alternative methods to correct model errors is to use the canonical correlation analysis (CCA) correction method. CCA forecasts at the present time show better skill than dynamical model forecasts especially over the midlatitudes. Model outputs are adjusted based on the CCA modes between the model forecasts and the observations. This study builds a canonical correlation prediction model for subseasonal (June) precipitation. The predictors are circulation fields over western North Pacific from the Global Seasonal Forecasting System version 5 (GloSea5) and observed snow cover extent over Eurasia continent from Climate Data Record (CDR). The former is based on simultaneous teleconnection between the western North Pacific and the East Asia, and the latter on lagged teleconnection between the Eurasia continent and the East Asia. In addition, we suggest a technique for improving forecast skill by applying the ensemble canonical correlation (ECC) to individual canonical correlation predictions.

Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5) (기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가)

  • Lee, So-Jeong;Hyun, Yu-Kyung;Lee, Sang-Min;Hwang, Seung-On;Lee, Johan;Boo, Kyung-On
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

Interannual variabilities of the East Asia precipitation associated with tropical and subtropical sea surface temperature (열대 및 아열대 SST에 관련된 동아시아 강우량의 경년 변동성)

  • Ha, Kyung-Ja
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.28-28
    • /
    • 1995
  • The aim of the present study is to investigate the interannual variabilities of the East Asia monsoon rainfall associated with the global sea surface temperature anomaly(SSTA). For this study, the summer rainfall(from June to August) over the twenty-eight period of 1961-1988 were analyzed with being divided by nine-subregions over East Asia including Korea, China and Japan. From the analysis of the principal modes explaining the interannual variation, the interannual variabilities of summer rainfalls in South Japan and Korea are larger than those of the other subregions of the East Asia. There is a strong negative correlation between the summer rainfalls of south China and Korea. In this study, the relationship between the summer monsoon of each subregion and SSTs of the tropical NINO regions, of western Pacific warm pool, and of the subtropical ocean were investigated. The longitudinal sections of the lagged cross correlations of the summer rainfal1 anomaly in (a) Korea and (b) south China, and the monthly SSTA in the equatorial(averaged from 65 to 6N) Pacific were analyzed. The negative maximum correlation pattems of Korea''s stammer rainfal1 and SSTs over the eastern Pacific is transfered to positive maximum conrlation over central Pacific region with a biennial periodicity. In South China, the significant positive correlations are found at -12 month lag over the eastern Pacific and maximum negative correlation at 16 month lag over the central Pacific with the quasi-biennial oscillation. But the correlation coefficient reverses completely to that in Korea. In order to investigate the most prevailing interannual variability of rainfall related to the favored SSTA region, the lagged cross correlations between East Asia rainfall and SSTs over the moO regions(NINO 1+2(0-105, 90W-80W), NINO 3(5N-5S, 150W-90W), NINO 4(5N-5S, 160E-l50W) and the western Pacific worm pool (5N-5S, 120E-l60E) were analyzed. Among the lagged cross-correlation cycles in NINO regions, the maximum correlations for the negative lagged months prevail in NINO 1+2 and NINO 3, and the cross correlations for the positive lagged months NINO 4. It is noteworthy that correlation between the western Pacific warm pool SSTA and the monsoon rainfall in Korea and South China have the maximum value at negative 4 month lag. The evolution of the correlation between the East Asia monsoon rainfall and SSTA is linked to the equatorial convective cluster and related to northward propagating situation, and raising the possibility that the East Asia monsoon precipitation may be more fundamentally related to the interaction of intraseasonal oscillations and the sub-regional characteristics including the surface boundary conditions and the behavior of climatological air mass.

Interannual variabilities of the East Asia precipitation associated with tropical and subtropical sea surface temperature (열대 및 아열대 SST에 관련된 동아시아 강우량의 경년 변동성)

  • 하경자
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.413-426
    • /
    • 1995
  • The aim of the present study is to investigate the interannual variabilities of the East Asia monsoon rainfall associated with the global sea surface temperature anomaly(SSTA). For this study, the summer rainfall(from June to August) over the twenty-eight period of 1961-1988 were analyzed with being divided by nine-subregions over East Asia including Korea, China and Japan. From the analysis of the principal modes explaining the interannual variation, the interannual variabilities of summer rainfalls in South Japan and Korea are larger than those of the other subregions of the East Asia. There is a strong negative correlation between the summer rainfalls of south China and Korea. In this study, the relationship between the summer monsoon of each subregion and SSTs of the tropical NINO regions, of western Pacific warm pool, and of the subtropical ocean were investigated. The longitudinal sections of the lagged cross correlations of the summer rainfal1 anomaly in (a) Korea and (b) south China, and the monthly SSTA in the equatorial(averaged from 65 to 6N) Pacific were analyzed. The negative maximum correlation pattems of Korea's stammer rainfal1 and SSTs over the eastern Pacific is transfered to positive maximum conrlation over central Pacific region with a biennial periodicity. In South China, the significant positive correlations are found at -12 month lag over the eastern Pacific and maximum negative correlation at 16 month lag over the central Pacific with the quasi-biennial oscillation. But the correlation coefficient reverses completely to that in Korea. In order to investigate the most prevailing interannual variability of rainfall related to the favored SSTA region, the lagged cross correlations between East Asia rainfall and SSTs over the moO regions(NINO 1+2(0-105, 90W-80W), NINO 3(5N-5S, 150W-90W), NINO 4(5N-5S, 160E-l50W) and the western Pacific worm pool (5N-5S, 120E-l60E) were analyzed. Among the lagged cross-correlation cycles in NINO regions, the maximum correlations for the negative lagged months prevail in NINO 1+2 and NINO 3, and the cross correlations for the positive lagged months NINO 4. It is noteworthy that correlation between the western Pacific warm pool SSTA and the monsoon rainfall in Korea and South China have the maximum value at negative 4 month lag. The evolution of the correlation between the East Asia monsoon rainfall and SSTA is linked to the equatorial convective cluster and related to northward propagating situation, and raising the possibility that the East Asia monsoon precipitation may be more fundamentally related to the interaction of intraseasonal oscillations and the sub-regional characteristics including the surface boundary conditions and the behavior of climatological air mass.

  • PDF

Future Changes in Surface Radiation and Cloud Amount over East Asia under RCP Scenarios (RCP 시나리오에 따른 미래 동아시아 지표복사에너지와 운량 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Shim, Sungbo;Byun, Youngwha
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.433-442
    • /
    • 2016
  • In this study, we examine future changes in surface radiation associated with cloud amount and aerosol emission over East Asia. Data in this study is HadGEM2-CC (Hadley Centre Global Environmental Model version 2, Carbon Cycle) simulations of the Representative Concentration Pathways (RCPs) 2.6/4.5/8.5. Results show that temperature and precipitation increase with rising of the atmosphere $CO_2$. At the end of $21^{st}$ century (2070~2099) relative to the end of $20^{st}$ century (1981~2005), changes in temperature and precipitation rate are expected to increase by $+1.85^{\circ}C/+6.6%$ for RCP2.6, $+3.09^{\circ}C/+8.5%$ for RCP4.5, $+5.49^{\circ}C/10%$ for RCP8.5. The warming results from increasing Net Down Surface Long Wave Radiation Flux (LW) and Net Down Surface Short Wave Radiation Flux (SW) as well. SW change increases mainly from reduced total Aerosol Optical Depth (AOD) and low-level cloud amount. LW change is associated with increasing of atmospheric $CO_2$ and total cloud amount, since increasing cloud amounts are related to absorb LW radiation and remit the energy toward the surface. The enhancement of precipitation is attributed by increasing of high-level cloud amount. Such climate conditions are favorable for vegetation growth and extension. Expansion of C3 grass and shrub is distinct over East Asia, inducing large latent heat flux increment.

Assessment of Near-Term Climate Prediction of DePreSys4 in East Asia (DePreSys4의 동아시아 근미래 기후예측 성능 평가)

  • Jung Choi;Seul-Hee Im;Seok-Woo Son;Kyung-On Boo;Johan Lee
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.355-365
    • /
    • 2023
  • To proactively manage climate risk, near-term climate predictions on annual to decadal time scales are of great interest to various communities. This study evaluates the near-term climate prediction skills in East Asia with DePreSys4 retrospective decadal predictions. The model is initialized every November from 1960 to 2020, consisting of 61 initializations with ten ensemble members. The prediction skill is quantitatively evaluated using the deterministic and probabilistic metrics, particularly for annual mean near-surface temperature, land precipitation, and sea level pressure. The near-term climate predictions for May~September and November~March averages over the five years are also assessed. DePreSys4 successfully predicts the annual mean and the five-year mean near-surface temperatures in East Asia, as the long-term trend sourced from external radiative forcing is well reproduced. However, land precipitation predictions are statistically significant only in very limited sporadic regions. The sea level pressure predictions also show statistically significant skills only over the ocean due to the failure of predicting a long-term trend over the land.

An Uncertainty Assessment of Temperature and Precipitation over East Asia (동아시아 기온과 강수의 불확실성 평가)

  • Shin, Jin-Ho;Kim, Min-Ji;Lee, Hyo-Shin;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.299-303
    • /
    • 2008
  • In this study, an uncertainty assessment for surface air temperature(T2m) and precipitation(PCP) over East Asia is carried out. The data simulated by the intergovermental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) Atmosphere-Ocean coupled general circulation Model (AOGCM) are used to assess the uncertainty. Examination of the seasonal uncertainty of T2m and PCP variabilities shows that spring-summer cold bias and fall warm bias of T2m are found over both East Asia and the Korea peninsula. In contrast, distinctly summer dry bias and winter-spring wet bias of PCP over the Korea peninsula is found. To investigate the PCP seasonal variability over East Asia, the cyclostationary empirical orthogonal function(CSEOF) analysis is employed. The CSEOF analysis can extract physical modes (spatio-temporal patterns) and their undulation (PC time series) of PCP, showing the evolution of PCP. A comparison between spatio-temporal patterns of observed and modeled PCP anomalies shows that positive PCP anomalies located in northeastern China (north of Korea) of the multi-model ensemble(MME) cannot explain properly the contribution to summer monsoon rainfalls across Korea and Japan. The uncertainty of modeled PCP indicates that there is disagreement between observed and MME anomalies. The spatio-temporal deviation of the PCP is significantly associated with lower- and upper-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly contribute to summer rainfalls. These lower- and upper-level circulations physically consistent with PCP give a insight of the reason why differences between modeled and observed PCP occur.

  • PDF

Understanding Climate Change over East Asia under Stabilized 1.5 and 2.0℃ Global Warming Scenarios (1.5/2.0℃ 지구온난화 시나리오 기반의 동아시아 기후변화 분석)

  • Shim, Sungbo;Kwon, Sang-Hoon;Lim, Yoon-Jin;Yum, Seong Soo;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.391-401
    • /
    • 2019
  • This study first investigates the changes of the mean and extreme temperatures and precipitation in East Asia (EA) under stabilized 1.5℃ and 2℃ warming conditions above preindustrial levels provided by HAPPI project. Here, five model with 925 members for 10-year historical period (2006~2015) and 1.5/2.0℃ future warming scenarios (2091~2100) have been used and monthly based data have been analyzed. The results show that the spatial distribution fields over EA and domain averaged variables in HAPPI 1.5/2.0℃ hindcast simulations are comparable to observations. It is found that the magnitude of mean temperature warming in EA and Korea is similar to the global mean, but for extreme temperatures local higher warming trend for minimum temperature is significant. In terms of precipitation, most subregion in EA will see more increased precipitation under 1.5/2.0℃ warming compared to the global mean. These attribute for probability density function of analyzed variables to get wider with increasing mean values in 1.5/2.0℃ warming conditions. As the result of vulnerability of 0.5℃ additional warming from 1.5 to 2.0℃, 0.5℃ additional warming contributes to the increases in extreme events and especially the impact over South Korea is slightly larger than EA. Therefore, limiting global warming by 0.5℃ can help avoid the increases in extreme temperature and precipitation events in terms of intensity and frequency.

Intercomparison of the East-Asian Summer Monsoon on 11-18 July 2004, simulated by WRF, MM5, and RSM models (WRF, MM5, RSM 모형에서 모의한 2004년 7월 11-18일의 동아시아 몬순의 비교)

  • Ham, Su-Ryun;Park, Seon-Joo;Bang, Cheol-Han;Jung, Byoung-Joo;Hong, Song-You
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.91-99
    • /
    • 2005
  • This study compares the summer monsoon circulations during a heavy rainfall period over the Korean peninsular from 11 to 18 July 2004, simulated by three widely used regional models; WRF, MM5, and RSM. An identical model setup is carried out for all the experiments, except for the physical option differences in the RSM. The three models with a nominal resolution of about 50 km over Korea are nested by NCEP-DOE reanalysis data. Another RSM experiment with the same cumulus parameterization scheme as in the WRF and MM5 is designed to investigate the importance of the representation of subgrid-scale parameterized convection in reproducing monsoonal circulations in East Asia. All thee models are found to be capable of reproducing the general distribution of monsoonal precipitation, extending northeastward from south China across the Korean peninsula, to northern Japan. The results from the WRF and MM5 are similar in terms of accumulated precipitation, but a slightly better performance in the WRF than in the MM5. The RSM improves the bias for precipitation as compared to those from the WRF and MM5, but the pattern correlation is degraded due to overestimation of precipitation in northern China. In the comparison of simulated synoptic scale features, the RSM is found to reproduce the large-scale features well compared to the results from the MM5 and WRF. On the other hand, the simulated precipitation from the RSM with the convection scheme used in the MM5 and WRF is closer to that from the WRF and MM5 simulations, indicating the significant dependency of simulated precipitation in East Asia on the cumulus parameterization scheme.

Future Change Using the CMIP5 MME and Best Models: II. The Thermodynamic and Dynamic Analysis on Near and Long-Term Future Climate Change over East Asia (CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: II. 동아시아 단·장기 미래기후전망에 대한 열역학적 및 역학적 분석)

  • Kim, Byeong-Hee;Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.249-260
    • /
    • 2015
  • The changes in thermodynamic and dynamic aspects on near (2025~2049) and long-term (2075~2099) future climate changes between the historical run (1979~2005) and the Representative Concentration Pathway (RCP) 4.5 run with 20 coupled models which employed in the phase five of Coupled Model Inter-comparison Project (CMIP5) over East Asia (EA) and the Korean Peninsula are investigated as an extended study for Moon et al. (2014) study noted that the 20 models' multi-model ensemble (MME) and best five models' multi-model ensemble (B5MME) have a different increasing trend of precipitation during the boreal winter and summer, in spite of a similar increasing trend of surface air temperature, especially over the Korean Peninsula. Comparing the MME and B5MME, the dynamic factor (the convergence of mean moisture by anomalous wind) and the thermodynamic factor (the convergence of anomalous moisture by mean wind) in terms of moisture flux convergence are analyzed. As a result, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter and summer over EA. However, over the Korean Peninsula, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter, whereas the thermodynamic factor causes the higher increasing trend of precipitation in B5MME than the MME during the boreal summer. Therefore, it can be noted that the difference between MME and B5MME on the change in precipitation is affected by dynamic (thermodynamic) factor during the boreal winter (summer) over the Korean Peninsula.