• Title/Summary/Keyword: Precipitation change

Search Result 1,164, Processing Time 0.032 seconds

Redetermining the curve number of Korean forest according to hydrologic condition class (수문학적 조건 등급에 따른 우리나라 산림의 유출곡선지수 재산정)

  • Park, Dong-Hyeok;Yu, Ji Soo;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.653-660
    • /
    • 2017
  • The SCS-CN (Soil Conservation Service-Curve Number) method has been practically applied for estimating the effective precipitation. The CN is used to be determined according to the land use condition based on the US standard. However, there are two distinctive differences between U.S. and Korean land use conditions: mountainous (forest) and rice paddy area that cover more than 70% of the Korean territory. The previous work proposed to use 79 for rice paddy area, regardless of the soil type. Because US SCS's goal was originally to increase crops, the SCS classification standard provides only for woods and there are no criteria to distinguish the wood and forest. To determine the CN for forest, alternatively the U.S. Forest Service criteria have been employed in practice considering hydrologic condition class. In this study, we investigated the change of the forest CN using the observed rainfall - runoff data within the target area. The results indicated that the CN for forest was suitable for HC=1, and the corresponding CNs were redetermined between 54 and 55.

The Microstructural Properties Change Owing to the Sintering Condition of T42 High Speed Steel Produced by Powder Injection Molding Process (분말 사출 성형법으로 제조된 T42 고속도 공구강의 소결 조건에 따른 조직 특성 변화)

  • Do, Kyoung-Rok;Choi, Sung-Hyun;Kwon, Young-Sam;Cho, Kwon-Koo;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • High speed steels (HSS) were used as cutting tools and wear parts, because of high strength, wear resistance, and hardness together with an appreciable toughness and fatigue resistance. Conventional manufacturing process for production of components with HSS was used by casting. The powder metallurgy techniques were currently developed due to second phase segregation of conventional process. The powder injection molding method (PIM) was received attention owing to shape without additional processes. The experimental specimens were manufactured with T42 HSS powders (59 vol%) and polymer (41 vol%). The metal powders were prealloyed water-atomised T42 HSS. The green parts were solvent debinded in normal n-Hexane at $60^{\circ}C$ for 24 hours and thermal debinded at $N_2-H_2$ mixed gas atmosphere for 14 hours. Specimens were sintered in $N_2$, $H_2$ gas atmosphere and vacuum condition between 1200 and $1320^{\circ}C$. In result, polymer degradation temperatures about optimum conditions were found at $250^{\circ}C$ and $480^{\circ}C$. After sintering at $N_2$ gas atmosphere, maximum hardness of 310Hv was observed at $1280^{\circ}C$. Fine and well dispersed carbide were observed at this condition. But relative density was under 90%. When sintering at $H_2$ gas atmosphere, relative density was observed to 94.5% at $1200^{\circ}C$. However, the low hardness was obtained due to decarbonization by hydrogen. In case of sintering at the vacuum of $10^{-5}$ torr at temperature of $1240^{\circ}C$, full density and 550Hv hardness were obtained without precipitation of MC and $M_6C$ in grain boundary.

The Development of the Hantan River Basin, Korea and the Age of the Sediment on the top of the Chongok Basalt (한탄강유역의 발달과정과 전곡현무암 위의 퇴적물의 연대)

  • Bae, Kidong
    • The Korean Journal of Quaternary Research
    • /
    • v.3 no.1
    • /
    • pp.87-101
    • /
    • 1989
  • The development of the Hantan river basin can be divided into three stages. The first stage include the ancient Hantan channel system prior to the Chongokni basalt which yield dates of about 0.6 mya from the K/Ar dating method. During this period the Baekuyri formation was formed. The Baekuyri formation is widely observed under the Chongokni basalt along the current river system. The second stage is the period when stream channels stayed on the top of the basalt plateau. Aggradation and deggradation were continued by meandering and braiding channel systems until major stream channel was formed. The currently remaining deposit on the top of the basalt was formed by lacustrine and fluvial systems in this period. During this period Pleistocene hominid was present on edge of water and flood plain and left Paleolithic material. This period was begun at the time of the final basalt flow dated about 300,000 BP. The third stage is designed for the time when the Hantan river channel was dropped down to a level from which the channel could not influence the top of the basalt any more No more deposit could be formed but erosion by surface water has been continued on the top of the basalt since then. The dropping of the Hantan river channel was probably not very long after the final flow of the basalt. Because of frost action and heavy concentrated precipitation in the basin area along with blocky and clumnar joint structure of the basalt, erosional process of the basalt is believed to have been carried out within a relatively short time. The lowering of the Hantan river channel was probably completed in a cycle of major fluctuation of world cimate. Also, the redclay on the top of the basalt is believed to have been formed during a warm period around 200,000 BP, which accords with the climatic change suggested above fair1y well. The Paleolithic materials in tile deposits fell accordingly into approximately same time period.

  • PDF

Classification of Groundwater Level Variation Types Near the Excavated Area of the Temporary Gulpocheon Discharge Channel (굴포천 임시방수로 굴착구간 주변의 지하수 수위 변동 유형 분류)

  • Kim, Chang-Hoon;Lee, Su-Gon;Hahn, Jeong-Sang;Kim, Nam-Ju;Jeon, Byeong-Chu
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.631-641
    • /
    • 2014
  • Characteristics of water-level changes in the Temporary Gulpocheon Discharge Channel were identified by observing and analyzing changes in the subterranean water level induced by hydrological stresses the underground aquifer. The subterranean water level refers to the level at which the pressure of subterranean water passing through the corresponding position has an equipotential value that is in equilibrium with the atmospheric pressure at that location. This water level is not fixed but changes in response to hydrological stress. It can be identified by repeatedly measuring the distance from the observation point to the surface of the subterranean water. The subterranean water-level change equation and the variance range of the hydrological curve of subterranean water over 24 hours at the Gimpo-Gimpo National Groundwater Monitoring Network (NGMN) were used as assessment factors. The variance characteristics of the subterranean water at the 18 monitoring system locations were classified into three impact, observational wish, and non-impact. The impact type accounted for 50% of the subterranean water of and accurately reflected the water-level changes due to hydrological stress, showing that distance is the major controlling factor. The observational wish type accounted for 27.8% of the subterranean water, and one of the two assessment factors did not meet the assessment factors. The nonimpact type accounted for 22.2% of the subterranean water. This type satisfied the two assessment factors and represents subterranean water-level changes response to precipitation.

On the Change of Hydrologic Conditions due to Global Warming : 2. An Analysis of Hydrologic Changes in Daehung Dam Basin using Water Balance Model (지구온난화에 따른 수문환경의 변화와 관련하여 : 2. 물수지 모형을 이용한 대청댐 상류 유역 수문환경의 변화 분석)

  • An, Jae-Hyeon;Yun, Yong-Nam;Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.511-519
    • /
    • 2001
  • Global warming has begun since the industrial revolution and it is getting worse recently. Even though the increase of greenhouse gases such as $CO_2$is thought to be the main cause for glogal warming, its impact on global climate has not been revealed clearly in rather quantitative manners. The objective of this research is to predict the hydrological environment changes in the Daechung Dam basin due to the global warming. A mesoscale atmospheric/hydrologic model (IRSHAM96 model) is used to predict the possible changes in precipitation and temperature in the Daechun Dam basin. The simulation results of IRSHAM96 model and a conceptual water balance model are used to analyze the changes in soil moisture, evapotranspiration and runoff in the Daechung Dam basin. From the simulation results using the water balance model for 1x$CO_2$and 2x$CO_2$situations, it has been found that the runoff would be decreased in dry season, but increased in wet season due to the global warming. Therefore, it is predicted that the frequency of drought and flood occurrences in the Daechung Dam basin would be increased in 2x$CO_2$condition.

  • PDF

Distribution of Cyanotoxin Microcystin-LR in Han River System and Ecological Park in Seoul and Kyunggi Districts (서울 경기지역의 공원 연못 및 한강 수계내 조류독소 Microcystin-LR의 분포)

  • Suh, Mi-Yeon;Kim, Baik-Ho;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.237-248
    • /
    • 2005
  • To determine the content of hazard microcystin (MC) in Han River system and Ecological Ponds in Seoul City and Kyunggi district, a most toxic derivative, microcystin-LR (MCLR) of 15 samples of 7 ponds, 4 rivers and 4 reservoirs during low precipitation and cold season in 2003 were analyzed by ELISA method. With the change of water temperature ($0.4\;{\sim}\;21.9^{\circ}C$), cyanobacteria including Microcystis aeruginosa dominated the cold phytoplankton community in small ecological ponds such as Kyungbokgung Kyunghyaeru (KBP), Seokchon reservoir (SCR), Yangsoori Ryukgakji (YSS), having the long residence time. Contents of MCLR (the detection limit; $0.05\;{\mu}g\;L^{-1}$) were high in cyanobacteria-rich sites, especially, Microcystis aeruginosa. Total MCLR, cell extracted type plus dissolved type, were $1.39\;{\mu}g\;L^{-1}$ in KBP, $0.55\;{\mu}g\;L^{-1}$ in SCR and $0.59\;{\mu}g\;L^{-1}$ in YSS, in the first sampling having a high temperature (>$20^{\circ}C$), while some detected only in YSS during the cold season. As expected, the MCLR content was correlated with Microcystis aeruginosa (r = 0.526 for cell extracted type, r = 0.433 for dissolved type). Therefore, low concentration of MCLR detected in small ponds and Han river system in Seoul metropolitan city and Kyunggi district, maybe hardly affect human recreation activity, especially the drinking water supply.

Long Term Variations and Environment Factors of Zooplankton Community in Lake Soyang (소양호 동물플랑크톤 군집의 장기변동과 환경요인: 2003~2014)

  • Kim, Moon Sook;Kim, Bomchul;Jun, Man-Sig
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • Long-term variation of zooplankton community and species composition was studied from 2003 to 2014 in a deep reservoir, Lake Soyang, in monsoon climate region, Korea. In addition, we examined the correlation with environmental factors. Annual precipitation of watershed showed a large variation in the $705{\sim}1,779mm\;yr^{-1}$ and more than 70% of it was being concentrated from June to September. The water quality of Lake Soyang was shown a clearly seasonal variations and particularly turbid water flowing into the lake during rainy season was the most important environmental factors. Zooplankton community in Lake Soyang showed a significant difference before and after 2006. Zooplankton biomass has shown a large increase and also showed a change in the zooplankton community structure since 2006. The of zooplankton showed positive correlation with temperature and BOD, Chl. a, TP concentration. These results are considered that nutrient and organic matter contained in the turbid water influences the increase in zooplankton biomass and species composition. However, water quality was limited to account for the increase in biomass of zooplankton. For example, increase of small zooplankton density (rotifer; Keratella cochlearis, Polyarthra vulgaris) in spring which is dominated by diatoms (large size; Melosira, Synedra etc.) is considered as a bottom-up effect by the microbial loop. And increased density of crustaceans in autumn was considered a top-down effects by the relationship between predator and prey of microzooplankton and mesozooplankton. In other words the inflow of allochthonous organic matter during rainy season also affected to zooplankton food web in Lake Soyang. In conclusion, biomass, diversity and long-term variations of zooplankton in Lake Soyang were determined by physico-chemical factors but also it is considered that biological interactions is important.

Extraction, purification and properties of anti-complementary polysaccharide from Arecae Pericarpium (대복피로부터 항보체 활성다당의 추출, 정제 및 그 특성)

  • Kwon, Kyung-Sup;Shin, Kwang-Soon;Cho, Hong-Yon;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.308-314
    • /
    • 1992
  • To examine the characteristics of anti-complementary compounds from Arecae Pericarpium (the pericarps of Areca catechu) which showed the highest activity during our screening procedures, the extraction and purification were performed. AC-1 fraction from Arecae Pericarpium was purified by hot water extraction, methanol reflux, ethanol precipitation, dialysis and lyophilization. This compound had total sugar 48.2%, uronic acid 14.6% and protein 36.8%. Rhamnose, arabinose, mannose and galactose were found in sugar components. By cetavlon (cetyltrimethylammonium bromide) treatment AC-1 was fractionated to AC-2, AC-3 and AC-4. Among them, AC-2 showed the highest activity and yield. By periodate oxidation, AC-2 was deactivated, but had no change in activity by pronase digestion. Moreover active fractions, AC-2-IIIa and AC-2-IIIc isolated from AC-2 by two successive column chromatography using DEAE-Toyopearl $650C(Cl^-form)$ and Sephadex G-100. AC-2-IIIa was mainly made up of rhamnose, mannose, galactose and glucose, and AC-2-IIIc, mannose, galactose and glucose. These both polysaccharides were identified as homogeneous by gel filtration of Sepharose CL-4B and electrophoresis, and molecular weights of them were 120,000 and 15,000, respectively.

  • PDF

Development of distributed inundation routing method using SIMOD method (SIMOD 기법을 이용한 분포형 침수 추적 기법 개발)

  • Lee, Suk Ho;Lee, Dong Seop;Kim, Jin Man;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.579-588
    • /
    • 2016
  • Changes in precipitation due to climate change is made to induce the local and intensive rainfall, it is increasing damage caused by inland inundation. Therefore, it requires a technique for predicting damage caused by flooding. In this study, in order to determine whether this flood inundated by any route when the levee was destroyed, Which can simulate the path of the flood inundation model was developed for the SIMOD (Simplified Inundation MODel). Multi Direction Method (MDM) for differential distributing the adjacent cells by using the slope and Flat-Water Assumption (FWA)-If more than one level higher in the cell adjacent to the cell level is the lowest altitude that increases the water level is equal to the adjacent cells- were applied For the evaluation of the model by setting the flooding scenarios were estimated hourly range from the target area. SIMOD model can significantly reduce simulation time because they use a simple input data of topography (DEM) and inflow flood. Since it is possible to predict results within minutes, if you can only identify inflow flood through the runoff model or levee collapse model. Therefore, it could be used to establish an evacuation plan due to flooding, such as EAP (Emergency Action Plan).

Climatological variability of surface particulate organic carbon (POC) and physical processes based on ocean color data in the Gulf of Mexico

  • Son, Young-Baek;Gardner, Wilford D.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.235-258
    • /
    • 2011
  • The purpose of this study is to investigate climatological variations from the temporal and spatial surface particulate organic carbon (POC) estimates based on SeaWiFS spectral radiance, and to determine the physical mechanisms that affect the distribution of pac in the Gulf of Mexico. 7-year monthly mean values of surface pac concentration (Sept. 1997 - Dec. 2004) were estimated from Maximum Normalized Difference Carbon Index (MNDCI) algorithm using SeaWiFS data. Synchronous 7-year monthly mean values of remote sensing data (sea surface temperature (SST), sea surface wind (SSW), sea surface height anomaly (SSHA), precipitation rate (PR)) and recorded river discharge data were used to determine physical forcing factors. The spatial pattern of POC was related to one or more factors such as river runoff, wind-derived current, and stratification of the water column, the energetic Loop Current/Eddies, and buoyancy forcing. The observed seasonal change in the POC plume's response to wind speed in the western delta region resulted from seasonal changes in the upper ocean stratification. During late spring and summer, the low-density river water is heated rapidly at the surface by incoming solar radiation. This lowers the density of the fresh-water plume and increases the near-surface stratification of the water column. In the absence of significant wind forcing, the plume undergoes buoyant spreading and the sediment is maintained at the surface by the shallow pycnocline. However, when the wind speed increases substantially, wind-wave action increases vertical motion, reducing stratification, and the sediment were mixed downward rather than spreading laterally. Maximum particle concentrations over the outer shelf and the upper slope during lower runoff seasons were related to the Loop Current/eddies and buoyancy forcing. Inter-annual differences of POC concentration were related to ENSO cycles. During the El Nino events (1997-1998 and 2002-2004), the higher pac concentrations existed and were related to high runoffs in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico. During La Nina conditions (1999-2001), low Poe concentration was related to normal or low river discharge, and low PM/nutrient waters in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico.