• Title/Summary/Keyword: Precipitation Separation

Search Result 179, Processing Time 0.022 seconds

Growth Pattern and Phenology of Mankyua chejuense B.Y. Sun, M.H. Kim & C.H. Kim (제주고사리삼(Mankyua chejuense B.-Y. Sun, M.H. Kim & C.H. Kim)의 생장 형태 및 식물계절학적 특성)

  • Hyun, Hwa-Ja;Moon, Myung-Ok;Choi, Hyung-Soon;Kim, Chan-Soo
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • This study was conducted to analyze the pattern of growth and phenological characteristics of Mankyua chejuense B.-Y. Sun, M.H. Kim & C.H. Kim, which belong to the Ophioglossaceae family. M. chejuense asexually reproduced using rhizomes, and a clone of the species grew up to 52 cm based on root growth and new leaves was produced from rhizomes. The development of leaves were divided into four stages; leaf emergence-separation and growth of leaf-sporophyll maturation-senescence. Most leaves emerged in July and August with high temperatures and precipitation and most leaves reached full expansion during September-October and died during April-May next year. The life span of leave was 10 months, from July to April, and the start of leaf senescence varied depending on the habitat environment and this might result from micro environmental differences among the habitats.

Purification and Characterization of a Protease Produced by a Planomicrobium sp. L-2 from Gut of Octopus vulgaris

  • Liu, Qing;Sun, Shujing;Piao, Meizi;Yang, Ji Young
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.4
    • /
    • pp.273-279
    • /
    • 2013
  • Protease widely exists in the digestive tract of animals and humans, playing a very important role in protein digestion and absorption. In this study, a high protease-producing strain Planomicrobium sp. L-2 was isolated and identified from the digestive tract of Octopus variabilis. The strain was identified by physiological and biochemical experiments and 16S rDNA sequences analysis. A protease was obtained from the strain Planomicrobium sp. L-2 through ammonium sulfate precipitation, dialysis and enrichment, DEAE-Sephadex A50 anion-exchange chromatography, and Sephadex G-100 gel chromatography. The molecular weight and properties of the protease were characterized, including optimum temperature and pH, thermal stability, protease inhibitions and metal ions. According to our results, the protease from Planomicrobium sp. L-2 strain designated as F1-1 was obtained by three-step separation and purification from crude enzyme. The molecular weight of the protease was 61.4 kDa and its optimum temperature was $40^{\circ}C$. The protease F1-1 showed a broad pH profile for casein hydrolysis between 5.0~11.0. No residual activity was observed after incubation for 40 min at $60^{\circ}C$ and 60 min at $50^{\circ}C$. F1-1 protease was inhibited by $Mn^{2+}$, $Hg^{2+}$, $Pb^{2+}$, $Zn^{2+}$, and $Cu^{2+}$ ions, as well as PMSF, indicating that the protease F1-1 was a serine protease. Additionally, research basis provided by this study could be considered for industrial application of octopus intestinal proteases.

Characteristics of ionic Wind in a DC Corona Discharge in Needle-to-punched plate Geometry (침 대 중공평판전극에서 직류코로나 방전에 의한 이온풍 특성)

  • Lee, Bok-Hee;Kil, Hyeong-Joon;Eom, Ju-Hong;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.74-80
    • /
    • 2003
  • Ionic wind is produced by a corona discharge when a DC high voltage is applied across the point-to-plane gap geometry. The corona discharge phenomena have been investigated in several beneficial application fields such as electrostatic cooling, ozone generation, electrostatic precipitation and electrostatic spraying. Recently ionic wind might be used in aerodynamic, for example, heat transfer, airflow modification, and etc. In this work, in order to analyze the control behavior of the velocity and amount of ionic wind produced by the positive DC corona discharges. The ionic wind velocity was measured as a function of the applied voltage, diameter of the punched hole on plate electrode and separation between the point-to-plate electrodes. As a results, the airflow is generated from the tip of needle to the plate electrode in the needle-to-punched-plate electrode systems. The ionic wind velocity is linearly increased with an increase in applied voltage and ranges from 1 to 3 m/sec at the locations of 100-200 mm from the punched-plate.

Recovery of Gallium from Zinc Residues by Solvent Extraction (아연제련잔사로부터 용매추출법에 의한 갈륨의 회수)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.29-36
    • /
    • 2000
  • A study on the recovery of gallium from leaching solutions is carried out by solvent extraction in order to produce gallium oxide of high purity. The results show that the extraction of gallium is found to be increase with acidities of aqueous solution up to 7.4 M/L when pure isopropyl ether is used. And the extraction of iron also increases with increasing acidity of aqueous solution. It appears that the separation of gallium from iron cannot be satisfactorily accomplished with isopropyl ether. But, in the case of extaction with D2EHPA, almost complete extraction of iron is achieved-leaving all the gallium in the aqueous solution-by maintaining the acidity of aqueous solution at 2 M/L. Accordingly, $Ga_2O_3{\cdot}H_2O$ of more than 99wt.% in purity can be produced from zinc residues through the processes comprising of alkali leaching, precipitation by neutralization and solvent extraction using isopropyl ether and D2EHPA as extractants.

  • PDF

Facile synthesis of ZnBi2O4-graphite composites as highly active visible-light photocatalyst for the mineralization of rhodamine B

  • Nguyen, Thi Mai Tho;Bui, The Huy;Dang, Nguyen Nha Khanh;Ho, Nguyen Nhat Ha;Vu, Quang Huy;Ngo, Thi Tuong Vy;Do, Manh Huy;Duong, Phuoc Dat;Nguyen, Thi Kim Phuong
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2442-2451
    • /
    • 2018
  • Novel highly active visible-light photocatalysts in the form of zinc bismuth oxide ($ZnBi_2O_4$) and graphite hybrid composites were prepared by coupling via a co-precipitation method followed by calcination at $450^{\circ}C$. The asprepared $ZnBi_2O_4$-graphite hybrid composites were tested for the degradation of rhodamine B (RhB) solutions under visible-light irradiation. The existence of strong electronic coupling between the two components within the $ZnBi_2O_4$-graphite heterostructure suppressed the photogenerated recombination of electrons and holes to a remarkable extent. The prepared composite exhibited excellent photocatalytic activity, leading to more than 93% of RhB degradation at an initial concentration of $50mg{\cdot}L^{-1}$ with 1.0 g catalyst per liter in 150 min. The excellent visible-light photocatalytic mineralization of $ZnBi_2O_4-1.0graphite$ in comparison with pristine $ZnBi_2O_4$ could be attributed to synergetic effects, charge transfer between $ZnBi_2O_4$ and graphite, and the separation efficiency of the photogenerated electrons and holes. The photo-induced $h^+$ and the superoxide anion were the major active species responsible for the photodegradation process. The results demonstrate the feasibility of $ZnBi_2O_4-1.0graphite$ as a potential heterogeneous photocatalyst for environmental remediation.

Development and validation of LC-MS/MS for bioanalysis of hydroxychloroquine in human whole blood

  • Park, Jung Youl;Song, Hyun Ho;Kwon, Young Ee;Kim, Seo Jin;Jang, Sukil;Joo, Seong Soo
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.130-139
    • /
    • 2018
  • This study aimed to analyze a high-performance liquid chromatography (HPLC) separation using a pentafluorophenyl column of parent drug hydroxychloroquine (HCQ) and its active metabolite, desethylhydroxchloroquine (DHCQ) applying to determine bioequivalence of two different formulations administered to patients. A rapid, simple, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for bioanalysis of HCQ and its metabolite DHCQ in human whole blood using deuterium derivative $hydroxychloroquine-D_4$ as an internal standard (IS). A triple-quadrupole mass spectrometer was operated using electrospray ionization in multiple reaction monitoring (MRM) mode. Sample preparation involves a two-step precipitation of protein techniques. The removed protein blood samples were chromatographed on a pentafluorophenyl (PFP) column ($50mm{\times}4.6mm$, $2.6{\mu}m$) with a mobile phase (ammonium formate solution containing dilute formic acid) in an isocratic mode at a flow rate of 0.45 mL/min. The standard curves were found to be linear in the range of 2 - 500 ng/mL for HCQ; 2 - 2,000 ng/mL for DHCQ in spite of lacking a highly sensitive MS spectrometry system. Results of intra- and inter-day precision and accuracy were within acceptable limits. A run time of 2.2 min for HCQ and 2.03 min for DHCQ in blood sample facilitated the analysis of more than 300 human whole blood samples per day. Taken together, we concluded that the assay developed herein represents a highly qualified technology for the quantification of HCQ in human whole blood for a parallel design bioequivalence study in a healthy male.

Mechanism of Tungsten Recovery from Spent Cemented Carbide by Molten Salt Electrodeposition

  • Hongxuan Xing;Zhen Li;Enrui Feng;Xiaomin Wang;Hongguang Kang;Yiyong Wang;Hui Jin;Jidong Li
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2023
  • The accumulation of spent carbide (YG8), not only pollutes the environment but also causes waste of tungsten, cobalt and other rare metal resources. To better address this issue, we proposed a combined electrochemical separation process of low-temperature aqueous solution and high-temperature molten salt for tungsten and cobalt. H2WO4 was obtained from spent carbide in an aqueous solution, and we calcined it to obtain WO3, which was used as a raw material to obtain tungsten by using molten salt electrodeposition. The influence of the current efficiency and the electrochemical behavior of the discharge precipitation of W(VI) were also studied. The calcination results showed that the morphology of WO3 was regular and there were no other impurities. The maximum current efficiency of 82.91% was achieved in a series of electrodeposition experiments. According to XRD and SEM analysis, the recovered product was high purity tungsten, which belongs to the simple cubic crystal system. In the W(VI) reduction mechanism experiments, the electrochemical process of W(VI) in NaCl-Na2WO4-WO3 molten salt was investigated using linear scanning voltammetry (LSV) and chronoamperometry in a three-electrode system. The LSV showed that W(VI) was reduced at the cathode in two steps and the electrode reaction was controlled by diffusion. The fitting results of chronoamperometry showed that the nucleation mechanism of W(VI) was an instantaneous nucleation mode, and the diffusion coefficient was 7.379×10-10 cm2·s-1.

Enhancement of phosphate removal using stabilized Fe-Mn particle (Fe-Mn 입자의 안정화를 통한 인산염 효율 향상)

  • Seoyeon Kang;Jeongwoo Shin;Byugnryul An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.375-382
    • /
    • 2023
  • The binary oxide adsorbent using Fe and Mn (Fe-Mn) has been prepared by precipitation method to enhance the removal of phosphate. Different amounts of chitosan, a natural organic polymer, were used during preparation of Fe-Mn as a stabilizer to protect an aggregation of Fe-Mn particles. The optimal amount of chitosan has been determined considering the separation of the Fe-Mn particles by gravity from solution and highest removal efficiency of phosphate (Fe-Mn10). The application of Fe-Mn10 increased removal efficiency at least 15% compared to bare Fe-Mn. According to the Langmuir isotherm model, the maximum uptake (qm) and affinity coefficient (b) were calculated to be 184 and 240 mg/g, and 4.28 and 7.30 L/mg for Fe-Mn and Fe-Mn10, respectively, indicating 30% and 70% increase. The effect of pH showed that the removal efficiency of phosphate was decrease with increase of pH regardless of type of adsorbent. The enhanced removal efficiency for Fe-Mn10 was maintained in entire range of pH. In the kinetics, both adsorbents obtained 70% removal efficiency within 5 min and 90% removal efficiency was achieved at 1 h. Pseudo second order (PSO) kinetic model showed higher correlation of determination (R2), suggesting chemisorption was the primary phosphate adsorption for both Fe-Mn and Fe-Mn10.

Remediation Process by using Lime and Calcium Carbonate for Heavy Metal Contaminated Groundwater Originated from Landfills (소석회$(Ca(OH)_2)$와 탄산칼슘$(CaCO_3)$을 이용한 매립장 주변 중금속 오염 지하수 정화)

  • Song Nain;Lee Yesun;Lee Minhee
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.273-284
    • /
    • 2005
  • Coagulation and precipitation process by using lime$(Ca(OH)_2)$ and calcium carbonate $(CaCO_3)$ were applied to remove heavy metals from groundwater in laboratory scale. From results of batch tests, by the addition of $0.3\;wt.\%$ lime, more than $90\%$ of As and Mn were removed and $70-80\%$ of Cd and Zn were removed by using $0.5\;wt.\%$ of lime. Removal efficiency of Pb almost reached $100\%$ with only $0.1\;wt.\%$ of calcium carbonate and more than $93\%$ of Cd were removed by the addition of $0.1\;wt.\%$of calcium carbonate. Pilot scale column experiments were performed to remove heavy metals in the separation process of precipitated Hoc to supernatant after the coagulation/ precipitation. For lime as a coagulant, more than $99\%$of As were removed from artificial groundwater and removal efficiencies of Cd, Mn, and Zn were over $80\%$. By using calcium carbonate, more than $95\%$ of Cd and Pb were removed in column experiment. Fe and Mn contaminated groundwater taken from a real landfill site, Ulsan was used for the column experiment and more than $99\%$ of Fe and Mn were removed by the addition of $1\;wt.\%$ lime in column experiment, suggesting that the coagulation/precipitation process by using lime and calcium carbonate have a great possibility to remove heavy metals from contaminated groundwater.

STUDIES ON THE EXTRACTION OF SEAWEED PROTEINS 1. Extraction of Water Soluble Proteins (해조단백질의 추출에 관한 연구 1. 수용성 단백질의 추출)

  • RYU Hong-Soo;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.151-162
    • /
    • 1977
  • Distribution of marine algae is diverse in Korea and the resource of edible algae is abundant marking 239,037 tons of yearly production in 1976. They have been known as a protein source and used as a supplement in Korean diet. It is necessary to estimate the potentiality and properties of usable algal proteins especially as food resources and studies of extraction and separation of the proteins, therefore, are basically required for this purpose. In this study, the influence of various factors including the sample treatment, extraction time and temperature, sample us extraction solvent ratio and pH upon the extractability of the water soluble protein was determined. And the effect of precipitation treatment for isolation of the algal protein from the extracts was also tested. Nine species of algae, the major ones in consumption as food namely Porphyra suborbiculata, Undaria pinnatifida, Hizikia fusiforme, Sargassum fulvellu, Enteromorpha linza, Codium fragile, Sargassum kjellmanianum and Ulva pertusa were collected as fresh from Kijang, Yangsan Gun, in the vicinity of Busan city. The content of crude protein $(N\times6.25)$ of the algae ranged from $9.46\%\;to\;24.14\% showing the highest value in Porphyra suborbiculata and the minimum in Hizikia fusiforme. In the effort of maceration of blending methods on the extractability, immersion freezing in dry ice-methanol solution appeared most effective yielding 1.5 to 2.5 times extractability than that of the mortar grinding method. The effect of the ratio of sample vs solvent on extractability differed from species. It was enhanced at the ratio of 1:20 (w/v) in Ulva pertusa and Enteromorpha linza while the ratio was 1:30 (w/v) for Cedium fragile, Undaria pinnatifida, Hizikia fusiferme, Sargassum fulvellum and Porphyra suborbiculata and 1:40 for Sargassum kjellmanianum respectively. The effect of extraction time and temperature was revealed differently from species which might be caused by differences in the constitution of algal tissues resulting in that the extraction for 1 hour at $50^{\circ}C$ gave the maximum extractabilily in Ulva pertusa and Enteromorpha linza, 2 hours in Porphyra suborbiculata, Hikikia fusiforme, Undaria pinnatifida, Sargassum kjellmanianum and 3 hours in Codium fragile. And the extractability was higher at $50^{\circ}C$ to $60^{\circ}C$ for the most of the tested samples except Hizikia fusiforme. The optimum pH for the extraction was 9 to 12. The recovery of extractable nitrogen to the total nitrogen was $63\%$ in average with the first extracts and $8.6\%$ with the second extracts respectively. Both extracts were prepared by 2 hour extraction at $50{\pm}1^{\circ}C$ with dry ice-methanol frozen and seasand macerated materials. And these conditions assumed to be an optimum for the extraction of water soluble algal proteins since the nitrogen content after the first extraction covered $90\%$ of the total water extractable nitrogen. In the precipitation of the extracted proteins, Barnstein method and methanol treatment seemed to be more efficient than other precipitation methods.

  • PDF