• Title/Summary/Keyword: Precipitation Manipulation

Search Result 8, Processing Time 0.031 seconds

Short-term Effects of Warming and Precipitation Manipulation on Seasonal Changes in Fine Root Production and Mortality for Pinus densiflora Seedlings (인위적 온난화 및 강수 조절에 따른 소나무 묘목 세근 생산량과 고사율의 계절적 변화)

  • Han, Seung Hyun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • This study was conducted to investigate the effects of warming and precipitation manipulation on seasonal changes in fine root production (FRP) and fine root mortality (FRM) of 33-month-old Pinus densiflora seedlings for two years. The seedlings in warmed plots were warmed with $3.0^{\circ}C$ higher using infrared heaters. The air temperature of warmed (TW) plots was set to increase by $3^{\circ}C$ compared to temperature control (TC) plots, and the three precipitation manipulation consisted of precipitation decrease (-30%; PD), precipitation increase (+30%; PI) and precipitation control (0%; PC). FRP ($mm\;mm^{-2}\;day^{-1}$) was significantly altered by only precipitation manipulation (PC: 3.57, PD: 4.59, PI: 3.02), while warming had no significant effect on the FRP and FRM. Meanwhile, interactions between warming and precipitation manipulation and seasonal changes had no significant effects on FRP and FRM. However, the influences of seasonal changes in soil temperature and soil moisture on FRP and FRM were different according to warming. In TW plots, FRP showed a positive relationship with soil temperature, and FRM showed a negative relationship with soil moisture. On the other hand, in the TC plots, FRP showed a positive relationship with soil moisture, and there were no relationships between FRM and soil temperature and moisture. These results indicate that the climate factors that affect FRP and FRM might vary as the warming progresses.

Effects of Open-field Artificial Warming and Precipitation Manipulation on Physiological Characteristics and Growth of Pinus densiflora Seedlings (실외 인위적 온난화 및 강수 조절이 소나무 묘목의 생리적 특성과 생장에 미치는 영향)

  • Park, Min Ji;Yun, Soon Jin;Yun, Hyeon Min;Chang, Hanna;Han, Seung Hyun;An, Jiae;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Climate change affects plant responses on physiological characteristics and growth, and Pinus densiflora, one of the major tree species in Korea, are expected to be particularly vulnerable to rising temperature and increased precipitation. This study was conducted to investigate the effects of an open-field warming and precipitation manipulation on physiological characteristics and growth of P. densiflora seedlings. Seedlings of 2-year-old P. densiflora were planted in April, 2013, in open-field nursery located at Korea University. The air temperature of warmed plots had been set to be $3^{\circ}C$ higher than the control plots using infrared lamps. Precipitation was manipulated to be 30% lower or higher than the control, using transparent panels and drip irrigation. Net photosynthetic rate, total chlorophyll content, seedling height, root collar diameter and biomass were measured from April, 2014 to April, 2015. The increase in new shoot biomass from warming was statistically significant, with the biomass in warmed plots about 2-fold higher than in the control plots in 2014 and 2015. This result might be related to advanced bud burst and increased occurrence of abnormal new shoots in warmed plots. Meanwhile, the results of net photosynthetic rate, total chlorophyll content, seedling height, root collar diameter and total biomass from warming and precipitation manipulation were not statistically significant, but tendencies of lower net photosynthetic rate and higher seedling height and biomass in warmed plots compared to the control were shown. Such might be speculated as results of the extended growth period. When root to shoot (R/S) ratio was calculated from the biomass data obtained in April 2014 and April 2015, increased R/S ratio was observed regardless of the treatments applied. Drought tolerance of P. densiflora and particularly low annual precipitation observed in 2014 were suggested as the possible reasons.

The Early Growth Performances of Pinus densiflora and Larix kaempferi Seedlings Under Open-field Experimental Warming and Precipitation Manipulation (실외 실험적 온난화 및 강수 처리에 따른 소나무와 낙엽송 유묘의 초기 생장 특성)

  • Kwon, Boram;Cho, Min Seok;Yang, A-Ram;Chang, Hanna;An, Jiae;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • This study aimed to investigate the effects of climate change on the survival and growth performance of Pinus densiflora and Larix kaempferi seedlings using open-field experimental warming and precipitation manipulation. We measured the survival rate, root-collar diameter, and height, and then calculated the seedling quality index (SQI) of 2-year-old seedlings under 6 treatments [2 temperatures (TC: Control; TW: Warming) × 3 precipitation manipulations (PC: Control; PD: Decreased; PI: Increased)] and performed a two-way ANOVA to test for differences.The air temperature of the warming plots was 3℃ higher than that of the control plots, while the precipitation manipulation plots received ±40% of the precipitation received by the control plots. Temperature and precipitation treatments did not significantly affect the survival rate of P. densiflora; however, the SQI of P. densiflora decreased with increasing precipitation. In contrast, the mortality rate of L. kaempferi increased with increasing temperature and decreasing precipitation. Furthermore, in L. kaempferi, TC × PI treatment resulted in the lowest SQI with a significant interaction effect observed between the two factors. In summary, low seedling production and quality should be expected in P. densiflora as precipitation increases and in L. kaempferi as temperature increases or precipitation decreases. These results indicate species-specific sensitivities to climate change of two plant species at the nursery stage. With the occurrence of global warming, the frequencies of drought and heavy rainfall events are increased, and this could affect the survival and seedling quality of tree species. Therefore, it is necessary to improve nursery techniques by establishing new adaptation strategies based on species-specific growth performance responses.

Open-field Experimental Warming and Precipitation Manipulation System Design to Simulate Climate Change Impact (기후변화 영향 모의를 위한 실외 실험적 온난화 및 강수 조절 시스템 설계 연구)

  • Yun, Soon Jin;Han, Saerom;Han, Seung Hyun;Lee, Sun Jeoung;Jung, Yejee;Kim, Seoungjun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.159-164
    • /
    • 2014
  • The objective of this study was to establish an open-field experimental warming treatment and precipitation manipulation system to simulate climate change impact for Pinus densiflora seedlings based on a climate change scenario in Korea. Two-year-old seedlings were planted in a nursery in April, 2013. The air temperature of warmed plots (W) was set to increase by $3.0^{\circ}C$ compared to control plots (C) using infrared lamps from May, 2013. The three precipitation manipulation consisted of precipitation decrease using transparent panel (-30%; $P^-$), precipitation increase using pump and drip-irrigation (+30%; $P^+$) and precipitation control (0%; $P^0$). Initially, the air temperature was $2.2^{\circ}C$ higher in warmed plots than in control plots and later air temperature was maintained close to the target temperature of $3.0^{\circ}C$. The average soil temperature was $3.1^{\circ}C$ higher in warmed plots than in control plots. Also the average soil moisture content after the precipitation manipulation increased by 13.9% in $P^+W$ and decreased by 10.0% in $P^-W$ compared to $P^0W$, and increased by 23.7% in $P^+C$ and decreased by 7.6% in $P^-C$ compared to $P^0C$. It was confirmed that the open-field experimental warming and precipitation manipulation system was properly designed and operating.

Simulating Bioremediation of Uranium-Contaminated Aquifers

  • ;Peter R. Jaffe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.161-166
    • /
    • 2002
  • Bioremediation of trace metals in groundwater may require the manipulation of redox conditions via the injection of a carbon source. To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species we then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration.

  • PDF

Research on the Electrical Charging of a Water Droplet on the Electrode and Droplet Actuation Method using Electrical Charge (전극표면에서 액적의 충전현상과 이를 이용한 액적의 이동 방법에 관한 연구)

  • Jung, Yong-Mi;Oh, Hyung-Chang;Kang, In-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.666-669
    • /
    • 2008
  • Droplet in miniaturized microfluidic systems have received much focused attention recently. In this work, electrical charging phenomenon of a conducting water droplet on the electrode under the dc electric field is studied and using this phenomenon droplet actuation method for microreactor applications is experimentally demonstrated. To find effects of key factors, the effects of electric field, medium viscosity, and droplet size are investigated. A scaling law of charging for the conducting droplet is derived from the experimental results. Unlike the case of a perfect conductor, the estimated amount of electrical charge ($Q_{est}$) of a water droplet is proportional to the 1.59 power of the droplet radius (R) and the 1.33 power of the electric field strength (E). (For a spherical perfect conductor, Q is proportional to R2 and E.) It is thought that the differences are mainly due to incomplete charging of a water droplet resulted from the combined effect of electrochemical reaction at electrode and the relatively low conductivity of water. Using this phenomenon, we demonstrate the transport of the charged droplet and fusion of two oppositely-charged droplets. When electric field is subjected sequentially on the electrode, the charged droplet is transported on the electrode. For the visualization of fusion of charged droplets, the precipitation reaction is used. When subjected to a DC voltage, two droplets charged are moving and merging toward each other due to the Coulombic force and chemical reaction is simultaneously occurred by coalescence of droplets. It may be due to the interchange effect of charge. It is shown that the droplet can be used for microreactor where transporting, merging etc. of reagents constitute unit operation.

  • PDF

Changes in Methane Production in Coastal Mud Flat under Different Temperature and Salinity (온도 증가와 염도 감소에 따른 갯벌토양에서 메탄발생량의 변화)

  • Kim, Young Joo;Jung, Soo Hyun;Kang, Ho jeong
    • Journal of Wetlands Research
    • /
    • v.8 no.4
    • /
    • pp.41-47
    • /
    • 2006
  • Global climatic changes are expected to influence various biogeochemical processes in wetland ecosystems. In particular, coastal mud flat is anticipated to be affected directly by temperature increase as well as indirectly by a sea level rise and changes in precipitation. This study aimed to determine changes in methane production under different temperature and salinity by employing a laboratory-scale manipulation experiment. Soil samples were collected from a mud flat in Dong-Gum Kang-Hwa island in winter and two types of experiments were conducted. In the first experiment soil samples at 0-5 cm, 5-10 cm depth were incubated under same salinity with pore water and diluted salinity to 50 % of natural condition for 20 days and methane production was measured every other days. In the second experiment, soil samples at 5-10 cm depth were incubated in different temperature, $5^{\circ}C$ and $15^{\circ}C$, under same salinity conditions with first experiment for 31 days and methane production was measured. Results of the first experiment revealed that higher amount of methane was produced at 5-10 cm depth, and salinity effect was predominant at the end of the experiment. The second experiment showed that methane production was higher in $15^{\circ}C$ than $5^{\circ}C$. In addition, methane production was higher when sea water diluted to 50 % compared to control. Global climatic changes are expected to influence various biogeochemical processes in wetland ecosystems. In particular, coastal mud flat is anticipated to be affected directly by temperature increase as well as indirectly by a sea level rise and changes in precipitation. This study aimed to determine changes in methane production under different temperature and salinity by employing a laboratory-scale manipulation experiment. Soil samples were collected from a mud flat in Dong-Gum Kang-Hwa island in winter and two types of experiments were conducted. In the first experiment soil samples at 0-5 cm, 5-10 cm depth were incubated under same salinity with pore water and diluted salinity to 50 % of natural condition for 20 days and methane production was measured every other days. In the second experiment, soil samples at 5-10 cm depth were incubated in different temperature, $5^{\circ}C$ and $15^{\circ}C$, under same salinity conditions with first experiment for 31 days and methane production was measured. Results of the first experiment revealed that higher amount of methane was produced at 5-10 cm depth, and salinity effect was predominant at the end of the experiment. The second experiment showed that methane production was higher in $15^{\circ}C$ than $5^{\circ}C$. In addition, methane production was higher when sea water diluted to 50 % compared to control. These results suggest that methane production is highly influenced by changes in temperature and salinity in coastal mud flat. And that global climatic change may induce biological feedback by affecting production of another greenhouse gas, namely methane from coastal mud flat.

  • PDF

Limnological Characteristics and Influences of Free-floating Plants on the Woopo Wetland during the Summer (하계우포습지의 육수학적 특성 및 부유수생식물의 영향)

  • Joo, Gea-Jae;Kim, Gu-Yeon;Park, Sung-Bae;Lee, Chan-Woo;Choi, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.273-284
    • /
    • 2002
  • During January 1998-October 1999, the impact of free-floating plants (FFP) on limnology of the wetland ecosystem was evaluated through the investigation of physicochemical characteristics of the Woopo Wetland along with in situ manipulation experiments of aquatic plants. Flooding events occurred in the wetland during the summer period (Jun.-Aug.) and water levels rose to 2-3 m due to precipitation from the catchment and inflow from the main channel of the Nakdong River. Physicochemical parameters and plankton dynamics in the wetland during the summer were greatly influenced by floods and growth of free-floating plants. Dissolved oxygen (Jun.-Sept., 4.5${\pm}$2.5 mg/1; Oct.-May, 8,1 ${\pm}$4.0 mg/1) and pH (Jun.-Sept., 6.9${\pm}$0.4; Oct.-May,7.4${\pm}$0.8) levels were significantly lower during the summer than any other seasons. Three types of enclosure experiments (100 L, treatments with floating plants, screened and opened) were conducted under the presence and absence of sediment for 15 days in the 1999 summer. The treatments with sediment had higher levels of nutrient concentrations than those of the others. Among the treatments with sediment, nutrient concentrations in the treatments with free-floating plants were higher than the others. Zooplankton communities in each treatment showed a similar variation, although the scale of zooplankton densities differed. Rotifer community dominated the zooplankton at the initial phase of the experiment, but decreased drastically along with an increase of cladoceran and copepod communities. In conclusion, low levels of dissolved oxygen and pH in the Woopo Wetland during the summer seemed to be caused by a proliferation of free-floating plants and active decomposition process at the bottom of the sediment.