• Title/Summary/Keyword: Precipitated hydroxyapatite

Search Result 14, Processing Time 0.027 seconds

The Thermal Changes of Precipitated Hydroxyapatite (습식 합성 Hydroxyapatite의 가열 분해성)

  • Kim, Chang-Eun;Park, Hoon;Kim, Bae-Yeon;Lee, Dong-Yoon
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.907-915
    • /
    • 1990
  • The hydroxyapatite powder was prepared by the precipitation method. The obtained powder was heat-treated and its products were investigated in order to characterize its decomposition process. The powder was Ca-deficient hydroxyapatite with no relation to the Ca/P mole ratio in the initial solution. The obtained hydroxyapatite was thermally decomposed into tricalcium phosphate [Ca3(PO4)2, TCP] after heat-treatment above 80$0^{\circ}C$ and the extent of the decomposition was dependent on the nonstoichiometry of obtained hydroxyapatite, and the resultant hydroxyapatite and tricalcium phosphate maintained stable forms up to 120$0^{\circ}C$. The hydroxyapatite powder had the better stability with the samller the nonstoichinometry of hydroxyapatite. And the quantities of tricalcium phosphate obtained after decomposition were decreased, and also the corresponding decomposition temperatures were increased with decreasing extent of nonstoichiometry in precipitated hydroxyapatite.

  • PDF

Regeneration of a Micro-Scratched Tooth Enamel Layer by Nanoscale Hydroxyapatite Solution

  • Ryu, Su-Chak;Lim, Byoung-Ki;Sun, Fangfang;Koh, Kwang-Nak;Han, Dong-Wook;Lee, Jae-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.887-890
    • /
    • 2009
  • Hydroxyapatite (HAp)-based materials have attracted considerable attention on account of their excellent stability and recrystallization. Nanoscale HAp powders with a mean particle size of 200 nm were used to regenerate the enamel layers of damaged teeth. An artificially scratched tooth was immersed in a nanoscale HAp powder suspension in d.i. water (HAp of 70 wt%) at 37 ${^{\circ}C}$ for a period of 1~3 months. SEM and AFM showed that the scratched surface was ultimately inlaid with HAp after three months and the roughness increased from 2.80 to 5.51. Moreover, the hardness of the neo-generated HAp layer on the crown was similar to that of the innate layer. $Ca^{2+}$ and ${PO_4}^{3-}$ ions from the HAp powders dissolved in d.i. water were precipitated on the tooth to produce cemented pasteson the enamel surface due to its high recrystallizing characteristics, resulting in a hard neo-regenerated HAp layer on the enamel layer. This nanoscale HAp powder solution might be used to heal decayed teeth as well as to develop tooth whitening appliances.

A Study of Multi-Surface Treatments on the Porous Ti Implant for the Enhancement of Bioactivity (다공성 티타늄 임플란트의 생체적합성 증진을 위한 복합 표면처리에 관한 연구)

  • Cho, Yu-Jeong;Kim, Yung-Hoon;Jang, Hyoung-Soon;Kang, Tae-Ju;Lee, Won-Hee
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.229-234
    • /
    • 2008
  • Porous Ti implant samples were fabricated by the sintering of spherical Ti powders in a high vacuum furnace. To increase their surface area and biocompatibility, anodic oxidation and a hydrothermal treatment were then applied. Electrolytes in a mixture of glycerophosphate and calcium acetate were used for the anodizing treatment. The resulting oxide layer was found to have precipitated in the phase form of anatase $TiO_2$ and nano-scaled hydroxyapatite on the porous Ti implant surface. The porous Ti implant can be modified via an anodic oxidation method and a hydrothermal treatment for the enhancement of the bioactivity, and current multi-surface treatments can be applied for use in a dental implant system.

Effect of HA Crystals Precipitated by Hydrothermal-Treatment on the Bioactivity of Ti-6Al-7Nb Alloy (열수처리에 의해 석출된 HA 결정이 Ti-6Al-7Nb 합금의 생체활성에 미치는 영향)

  • Kwon O. S.;Choi S. K.;Moon J. W.;Lee M. H.;Bae T. S.;Lee O. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.607-613
    • /
    • 2004
  • This study was to investigate the surface properties of electrochemically oxidized Ti-6Al-7Nb alloy by anodic spark discharge technique. Anodizing was performed at current density 30 $mA/cm^2$ up to 300 V in electrolyte solutions containing $DL-{\alpha}$-glycerophosphate disodium salt hydrate($DL-{\alpha}$-GP) and calcium acetate (CA). Hydrothermal treatment was done at $300^{\circ}C$ for 2 hrs to produce a thin outermost layer of hydroxyapatite (HA). The bioactivity was evaluated from HA formation on the surfaces in a Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. The size of micropores and the thickness of oxide film increased and complicated multilayer by increasing the spark forming voltage. Needle-like HA crystals were observed on anodic oxide film after the hydrothermal treatment at $300^{\circ}C$ for 2 hrs. When increasing $DL-{\alpha}$-GP in electrolyte composition, the precipitated HA crystals showed the shape of thick and shorter rod. However, when increasing CA, the more fine needle shape HA crystals were appeared. The bioactivity in Hanks' solution was accelerated when the oxide films composed with strong anatase peak with presence of rutile peak. The increase of amount of Ca and P was observed in groups having bioactivity in Hanks' solution. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal and it was closer to 1.67 as increasing the immersion time in Hanks' solution.

Subunits of Sweet Potato $\beta$-Amylase (고구마 $\beta$-아밀라제의 subunit)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.1 no.2
    • /
    • pp.50-55
    • /
    • 1988
  • B-Amylase was obtained from sweet potato extract in a crystalline state by dialysis against water after precipitated with acetone according to the method reported previously followed by DEAE Sephadex A-50 ion exchange chromatography plus gel chromatography of Sephadex G-200. The purified enzyme was homogeneous by SDS PAGE. The efforts had done to remove the miner bands in SDS PAGE by Sephadex G-200 gel chromatography, DATE Sephadex A-50 ion exchange chromatography. isoelectrophocusing, affinity chromatography, hydroxyapatite chromatography, recrystallizstion and HPLC on a column of TSK gel SW 3000 but have given any result. But, N -terminal amino acid of the enzyme was revealed mainly alanine and trace of glycine and glutamic acid. Therefore, it seems that the miner bands in SDS PAGE have a role of subunit.

  • PDF

Preparation and Characteristics of Bioactive Silica-free Calcium Phosphate Glass-ceramics (실리카를 함유하지 않는 생체활성 칼슘인산염 글라스-세라믹스의 합성 및 특성)

  • Song, Chang-Weon;Lee, Joo-Hyeok;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.217-221
    • /
    • 2011
  • Glass-ceramic materials, which consist of glass matrix phase containing crystalline ${\beta}-Ca_3(PO_4)_2$ and ${\beta}-Ca_2P_2O_7$, have been prepared by heating at $750-900^{\circ}C$ of calcium phosphate invert glasses in the silica-free $CaO-P_2O_5-TiO_2-Na_2O$, system. With increasing heating temperature from 750 to $900^{\circ}C$, the crystallite size of precipitated ${\beta}-Ca_3(PO_4)_2$ in glass with $55CaO{\cdot}35P_2O_5{\cdot}3TiO_2{\cdot}7Na_2O$ (mol%) composition increased from 48 to 91 nm. With the extension of the immersion time in dilute acetic acid solution (pH = 5) to ${\geq}$200 min, the degree of dissolution of $Ca^{2+}$ and $P^{5+}$ ions in the glass-ceramics was linearly increased and the solution was constantly maintained at pH = ~7. Biomimetic nanostructured (62-88 nm in average dia.), sphere-shaped hydroxyapatite was homogeneously formed on the surface of the glass-ceramics when socked for 7-14 days in a Hanks' solution, indicating bioactivity of the prepared glass-ceramics.

EFFECTS OF FLUORIDE CONCENTRATION AND SEED MATERIAL ON SEEDED CRYSTAL GROWTH (불소의 농도와 Seed Material이 Crystal Growth에 미치는 영향)

  • Oh, Seung-Yeon;Jung, Il-Young;Kum, Kee-Yeon;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.560-574
    • /
    • 1997
  • The present study was undertaken to investigate the crystal growth onto human enamel mineral and synthetic hydroxyapatite(HA) seeds in media resembling the enamel fluid composition. Effects of fluoride at high concentrations on the precipitation were also examined in a bench-top crystal growth model adopting a miniaturized reaction column. The Ca, P and F concentrations and pH values of the inlet and outlet solutions were determined. The recovered solid samples were weighed to assess the amount of minerals precipitated during the experimental period, and finally viewed under a scanning electron microscope. Remarkable findings were that 1) both biological and synthetic seeds with the same total surface areas yielded similar amounts of crystal growth, 2) the amount of crystal growth was accelerated in a manner depending on fluoride concentrations in the media, 3) SEM observations disclosed that without the addition of fluoride, precipitation of thin, plate-like OCP crystals became prominent, but by increasing the fluoride concentration(beyond 1ppm F), rod-like crystals having a pointed edge were most frequently observed, without any evidence for precipitation of the plate-like crystals. Furthermore, the dimension of rod-like crystals was increased in proportion to fluoride concentrations, 4) there was no difference in the morphological feature of precipitated mineral phase upon seeding between human enamel seed and synthetic HA seed. The overall results support the view that the seeded crystal growth model is of value to gain insight into the mechanism of enamel crystal growth under fluoride regimens.

  • PDF

Effect of fluoride concentration in pH 4.3 and pH 7.0 supersaturated solutions on the crystal growth of hydroxyapatite (pH 4.3과 pH 7.0의 과포화용액에서 불소의 농도가 합성 수산화인회석의 결정 성장에 미치는 영향)

  • Shin, Han-Eol;Park, Sung-Ho;Park, Jeong-Won;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • Objectives: Present study was undertaken to investigate the crystal growth onto synthetic hydroxyapatite (HA) seeds in pH 4.3 and pH 7.0 supersaturated solutions with different fluoride concentrations. Materials and Methods: 8 groups of pH 4.3 and 7.0 calcium phosphate supersaturated solutions were prepared with different fluoride concentrations (0, 1, 2 and 4 ppm). Calcium phosphate precipitates yield crystal growth onto the HA seed surface while solutions flow. For evaluation of crystallizing process, the changes of $Ca^{2+}$, $PO{_4}^{3-}$, $F^-$ concentrations of the inlet and outlet solutions were determined. The recovered solid samples were weighed to assess the amount of minerals precipitated, and finally determined their composition to deduce characteristics of crystals. Results: During the seeded crystal growth, there were significantly more consumption of $Ca^{2+}$, $PO{_4}^{3-}$, $F^-$ in pH 4.3 solutions than pH 7.0 (p < 0.05). As fluoride concentration increased in pH 4.3 solution, $Ca^{2+}$, $PO{_4}^{3-}$, $F^-$ consumption in experimental solutions, weight increment of HA seed, and fluoride ratio in crystallized samples were increased. There were significant differences among the groups (p < 0.05). But in pH 7.0 solution, these phenomena were not significant. In pH 7.0 solutions, analyses of crystallized samples showed higher Ca/P ratio in higher fluoride concentration. There were significant differences among the groups (p < 0.05). But in pH 4.3 solution, there were not significant differences in Ca/P ratio. Conclusions: Crystal growth in pH 4.3 solutions was superior to that in pH 7.0 solutions. In pH 4.3 solutions, crystal growth increased with showed in higher fluoride concentration up to 4 ppm.

Biomimetic Apatite Precipitated on the Surface of Titanium Powder (티타늄분말의 표면에 석출된 생체모방 아파타이트)

  • Kim, Jong-Hee;Sim, Young-Uk;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.127-131
    • /
    • 2010
  • Biomimetic whisker-like apatite was formed on thermally and NaOH-treated titanium powder in a simulated body fluid (SBF). In the early process of the SBF immersion, the surface structure of the titanium powder was loosened, possibly due to the dissolution of $Na^+$ ions on the surface of the titanium powder into SBF. When immersed for 7 days in SBF, fine precipitates appeared on the titanium surfaces; the coating layer (<200 nm in thickness) consisted of nanostructured, amorphous whisker-like and particulate phase, observed by TEM. With the extension of the immersion time to 16 days, the chrysanthemum flower type morphology of carbonated hydroxyapatite with a nanocrystallinity was developed on the surface of the titanium powder.

Electrochemical hydrothermal treatment on Pure Titanium by the method of Cathodic reduction (음극환원법에 의한 Pure Ti의 전기화학적 열수처리)

  • Song, Jae-Joo;Kim, Kyeong-Seon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.7 no.4
    • /
    • pp.471-479
    • /
    • 2007
  • The purpose of this study was to examine the optimum condition of impulse during the anodic spark oxidation applying pulse current as well as to find the excellent condition for HA precipitation the after electrochemical hydrothermal treatment by cathode reduction method. After anodic spark oxidation, the anodized specimen and the Pt plate connected cathode and anode, respectively. Hydrothermal treatment performed at 90, 120, $150^{\circ}C$ for 2 hours in the electrolyte containing $K_2HPO_4$, $CaCl_2{\cdot}2H_2O$, Tris(Hydroxymethyl)-$(CH_2OH)_3\;CNH_2$(Aminomethane), and NaCl. The optimum impulse voltage for anodic spark oxidation was 350V. The optimum pulse cycle measured at 10 mS. The HA crystals precipitated excellently by cathode reduction at $150^{\circ}C$ for 2 hours. The phases of anatase, rutile, and HA coating on the surface of modified titanium surface immersed in Hanks' solution for 3weeks were detected by XRD measurement and the intensity of HA crystal phase has increased by temperature and time of hydrothermal treatment. According to the our experiments, we found that Pure Ti will be good materials of bioactivity and biocompatibility.

  • PDF