• 제목/요약/키워드: Precipitated calcium carbonate

검색결과 93건 처리시간 0.017초

폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석 (Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder)

  • 이향선;송훈
    • 한국건축시공학회지
    • /
    • 제24권2호
    • /
    • pp.181-191
    • /
    • 2024
  • 석회석은 시멘트의 주원료로써 90% 이상을 사용하고 있으며, 고온 소성 과정에서 및 석회석의 탈탄산 반응으로 많은 양의 CO2를 배출한다. 이에 석회석 사용량 저감을 위해 원료를 대체할 수 있는 부산물에 관한 연구들이 진행 중이다. 또한 광물 탄산화는 기체인 CO2를 탄산염 광물로 전환하는 기술로 산업시설에서 배출되는 CO2를 포집하여 광물로 저장 및 자원화할 수 있다. 한편, 건설폐기물은 계속적으로 증가하는 추세로, 폐콘크리트는 많은 부분을 차지하고 있다. 폐콘크리트는 파쇄 및 분쇄를 통해 순환골재로써 활용되고 있으나 이때 발생하는 폐콘크리트 미분말은 유효하게 재이용 되지 못하고 대부분 폐기 또는 매립되는 실정이다. 이에 본 연구에서는 폐콘크리트를 석회석 대체재로써 활용하여 광물 탄산화 기술을 적용할 수 있는 이산화탄소 반응경화 시멘트 제조 가능성을 확인하고자 한다. 폐콘크리트 미분말 치환율 및 이산화탄소 반응 경화 시멘트의 주요 광물이 생성되는 조건인 SiO2/(CaO+SiO2) 몰비에 따른 광물 분석 결과, 폐콘크리트 미분말 치환율과 SiO2/(CaO+SiO2) 몰비가 높을수록 주요 광물인 Pseudowollastonite와 Rankinite 생성량이 증가하였다. 또한 세 가지 SiO2/(CaO+SiO2) 몰비에서 공통적으로 폐콘크리트 미분말을 50% 치환한 경우 Gehlenite가 생성되었으며, 생성량 또한 유사하였다. 이는 콘크리트 미분말에 함유하고 있는 Al2O3 성분이 CaO와 SiO2와 반응하여 Gehlenite가 합성된 것으로 판단된다. Gehlenite의 경우 Pseudowollastonite와 Rankinite와 같이 광물 탄산화를 통해 탄산염 광물인 CaCO3를 생성하는 산화물로써 이는 Al2O3가 함유된 산업부산물을 원료로 사용하는 경우 이산화탄소 반응경화 시멘트의 광물로써 활용이 가능할 것으로 기대한다.

슬래그 내 양이온 추출 및 불순물 분리 연구 (A Study on Cation Extraction and Impurity Separation in Slag)

  • 이예환;강혜린;장영희;이시진;김성수
    • 청정기술
    • /
    • 제25권4호
    • /
    • pp.311-315
    • /
    • 2019
  • 제철산업에서 발생하는 슬래그의 자원화를 위하여 슬래그 내 양이온 추출 및 불순물 분리 연구를 수행하였다. 두 종류(Slag-A, B)의 슬래그를 사용하였으며, XRD 및 XRF 분석을 통해 30 ~ 40%의 Ca2+와 함께 Fe3+ (20 ~ 30%), Si4+ (15%), Al3+ (10%), Mn2+ (7%), Mg2+ (3 ~ 5%), 등 이온으로 구성되어 있음을 확인하였다. 2 M의 HCl을 추출용제로 사용하여 S/L ratio 별로 슬래그 주입하였으며, 추출액의 ICP 분석을 통해 S/L ratio가 높아짐에 따라 Ca2+ 추출량이 증가하는 것을 확인하였다. Ca2+ 추출 시 최적 S/L ratio는 0.1이며 Ca2+ 추출량은 8,940 (Slag-A), 10,690 (Slag-B) mg L-1로 나타났다. 하지만 추출액은 강산성(< pH 1)을 띠었으며 Ca2+ 이외에도 타이온(불순물)이 추출되었다. 슬래그를 고부가가치의 자원으로 이용하기 위해 Ca2+의 순도를 증진시키고자 pH-swing을 진행하였다. pH가 증가함에 따라 불순물이 침전되었으나 일정 pH 이상에서 Ca2+의 침전량이 급증 하였다. pH-swing을 통해 불순물을 분리하고 Ca2+의 선택도를 증진시킬 수 있음을 확인하였으며 pH 10.5 조건에서 Ca2+ 선택도는 99% 이상으로 나타났다. Ca2+가 선택적으로 용해되어 있는 수용액은 탄산화 공정에 적용되어 CO2를 저감하고 탄산칼슘을 생산할 수 있을 것으로 기대된다.

반응온도가 침강성탄산칼슘의 입도 및 형상에 미치는 영향 (Effect of reaction temperature on the particle size and crystal shape of precipitated calcium carbonate)

  • 송영준;박찬훈;조동성
    • 자원리싸이클링
    • /
    • 제4권1호
    • /
    • pp.38-45
    • /
    • 1995
  • 본 연구는 2.$0^{\circ}C$~85.3$^{\circ}C$, 2$\times$10\ulcornerM의 상압에서 탄산칼슘의 동질이상인 calcite, aragonite, vaterite의 생성과 그 형상에 미치는 온도의 영향을 조사한 것이다. 실험된 반응은 \circled1 Ca($HCO_3$)$_2$-Air bubble, \circled2 (OH)$Ca_2$ $-CO_2$, \circled3 (OH)$Ca_2$ $-H _2$$CO_3$, \circled4 $Ca(OH)_2$$-Na_2$CO$_3$, \circled5 $Ca(OH)_2$ $-K_2$ $ CO_3$, \circled6 $Ca(OH)_2$-($NH_4$)$_2$$CO_3$, \circled7 $CaCl_2$ $-Na2$ $CO_3$, \circled8 $CaCl_2$-K$_2$$CO_3$, \circled9 $CaCl_2$-($NH_4$)$_2$$CO_3$, \circled10 Ca($NO_3$)$_2$- $Na_2$$CO_3$, ⑪ Ca($NO_3$)$_2$- $K_2$$CO_3$, ⑫ Ca($NO_3$)$_2$등 12가지이며, 얻어진 실험결과는 아래와 같다. calcite는 반응종류에 상관없이 실험된 거의 모든 온도범위($2.0^{\circ}C$~$80.0^{\circ}C$)에서 생성하며 그 생성수율은 3$0^{\circ}C$정도일 때가 가장 높았다. aragonite는 반응에 따라 약간씩 차이는 있지만 주로 41.$0^{\circ}C$~53.$0^{\circ}C$ 사이에서 생성하기 시작하며 온도는 높을수록 그 수율은 높아진다. pH 또한 aragonite의 생성수율에 영향을 미치며 반응후 모액의 pH가 10.0~11.0 사이일 경우 생성수율이 최대가 되며 12.3 이상인 경우는 aragonite가 거의 생성되지 않았다. vaterite는 4$0^{\circ}C$ 이하에서만 생성하며 상당히 불안정하기 때문에 생성후 모액속에 방치할 경우 Cl ̄를 포함하지않는 반응계에서는 10~60분 경과후 완전히 calcite로 전이하고 Cl ̄를 포함하는 계에서는 약 140시간만에 완전히 calcite로 전이한다.

  • PDF