• 제목/요약/키워드: Precipitated calcium carbonate

검색결과 93건 처리시간 0.03초

A Brief review of Aragonite Precipitated Calcium Carbonate (PCC) Synthesis Methods and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Ahn, Ji Whan
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.443-455
    • /
    • 2017
  • This article provides an exclusive overview of the synthesized aragonite precipitated calcium carbonate and its applications in various fields. The last decade has seen a steady increase in the number of publications describing the synthesis, characterization and applications of calcium carbonate morphologies. Mainly, two kinds of processes have been developed for the synthesis of aragonite precipitated calcium carbonate under controlled temperature, concentrations and aging, and the final product is single-phase needle-like aragonite precipitated calcium carbonate formed. This review is mainly focused on the history of developed methods for synthesizing aragonite PCC, crystal growth mechanisms and carbonation kinetics. Carbonation is an economic, simple and ecofriendly process. Aragonite PCC is a new kind of functional filler in the paper and plastic industries, nowadays; aragonite PCC synthesis is the most exciting and important industrial application due to numerous attractive properties. This paper describes the aragonite PCC synthetic approaches and discusses some properties and applications.

풍촌지역 석회석을 이용한 침강성탄산칼슘의 제조 (Manufacture of Precipitated Calcium Carbonate from Pungchon Limestone)

  • 이재장;박종력
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.251-256
    • /
    • 2001
  • This research is focused on an improvement of additional value of high grade limestone. To obtain the basic data of precipitated calcium carbonate(PCC), studies of physical properties of limestone, calcination and hydration characteristics, the characteristics to manufacture quick lime, hydrated lime, ground calcium carbonate and precipitated calcium carbonate were performed. In the carbonation process, formation of rombohedral must be kept under $10^{\circ}C$ for reaction. Although the temperature of reaction of lime milk was limited under $30^{\circ}C$ for a colloidal PCC manufacture, over $50^{\circ}C$ for spindle type PCC. The recommended reaction conditions for colloidal PCC are $20^{\circ}C$ of reaction temperature, 4% of $Ca(OH)_2$ concentration, 1000rpm of stirring rate and 200ml/min of $CO_2$ gas flow rate.

  • PDF

A Study on the Preparation of Precipitated Calcium Carbonate from Steelmaking Slag

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.284-293
    • /
    • 2022
  • After extracting the calcium component from the KR slag and the converter slag using ammonium chloride solution, the extract was reacted with carbon dioxide to synthesize precipitated calcium carbonate (PCC). In order to understand the effect of ultrasonic waves on calcium extraction from slags and calcium carbonate synthesis, the efficiency of calcium carbonate synthesis according to the with or without of ultrasonic waves was analyzed. The synthetic efficiency of PCC was investigated according to various experimental conditions, and the synthesized calcium carbonate was analyzed using XRD and SEM. In both slags, the amount of PCC decreased as the reaction temperature increased. The pH at the end of the experiment capable of synthesizing the maximum PCC in the carbonation reaction was 7 (irradiated with ultrasound) and 8 (irradiated without ultrasound), respectively. Because the pH of the extraction filtrate is different when irradiated with or without ultrasound, the pH was adjusted to 9 by injecting an additive (10 M NaOH) before the carbonation experiment, and then the experiment was performed. When calcium was extracted from KR slag, the crystal phase appeared as calcite regardless of the pH at the end of the experiment. However, when calcium was extracted from the converter slag and the pH was set to 7 at the end of the experiment, the crystal phase of PCC appeared as a mixture of calcite and vaterite.

Preparation of Needle like Aragonite Precipitated Calcium Carbonate (PCC) from Dolomite by Carbonation Method

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Huh, Jae-Hoon;Ahn, Ji Whan
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.7-12
    • /
    • 2016
  • In this paper, we have developed a simple, new and economical carbonation method to synthesize a pure form of aragonite needles using dolomite raw materials. The obtained aragonite Precipitated Calcium Carbonate (PCC) was characterized by XRD and SEM, for the measurement of morphology, particle size, and aspect ratio (ratio of length to diameter of the particles). The synthesis of aragonite PCC involves two steps. At first, after calcinated dolomite fine powder was dissolved in water for hydration, the hydrated solution was mixed with aqueous solution of magnesium chloride at $80^{\circ}C$, and then $CO_2$ was bubbled into the suspension for 3 h to produce aragonite PCC. Finally, aragonite type precipitated calcium carbonate can be synthesized from natural dolomite via a simple carbonation process, yielding product with average particle size of $30-40{\mu}m$.

Ca($OH_2$)-$H_2 O$-$CO_2$계의 기액반응으로부터 비정질 탄산칼슘의 합성 및 결정화 (Synthesis and Crystallization of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System Ca($OH_2 O$)-$H_2$-$CO_2$)

  • 임재석;김가연;임굉
    • 공학논문집
    • /
    • 제5권1호
    • /
    • pp.73-87
    • /
    • 2004
  • 수산화칼슘현탁액과 탄산가스를 출발물질로 15~$50^{\circ}C$의 온도에서 기액반응으로 비정질 탄산칼슘($CaCO_3$.$nH_2 O$)의 생성과정을 전기저도도의 연속측정법, X-선회절법 및 투과전자현미경법을 이용하여 조사한 결과, 반응초기생성물은 비정질 탄산칼슘으로 반응현탁액의 전기전도도는 비정질 탄산칼슘의 생성 중 크게 강하하고 있으며, 이것은 수산화칼슘의 입자표면이 비정질 탄산칼슘미립자로 뒤덮여 용해를 방해받는 것과 비정질 탄산칼슘이 용액 속에서 불안정하여 즉시 용해한 다음 석출하여 칼사이트로 전이되어 미세한 침강성 탄산칼슘이 나란히 결합한 연쇄형 칼사이트가 생성된다. 비정질 탄산칼슘이 연쇄형 칼사이트로 변화하는 동안 현탁액의 전기전도도는 급격히 회복되고 이 과정에서 고농도 수산화칼슘현탁액의 외관점도가 상승한다. 이것은 연쇄형 칼사이트의 뒤얽힘에 의한 것이며, 다시 전기전도도의 1회 회복단계 이후에는 미반응 수산화칼슘에 의하여 비정질 탄산칼슘이 생성이 소멸되어 칼사이트의 성장반응이 이루어지고 pH가 9.5이하에서 연쇄형 칼사이트는 결합부분이 먼저 용해하여 결정질 탄산칼슘으로 분리생성된다. 비정질 탄산칼슘의 생성 및 합성온도의 영역은 전기전도도법에서 $15^{\circ}C$일 때 1차 강하단계(a-단계)에서 가장 적합하다.

  • PDF

Effect of Grain Size and Replacement Ratio on the Plastic Properties of Precipitated Calcium Carbonate Using Limestone as Raw Material

  • Baek, Chul Seoung;Cho, Kye Hong;Ahn, Ji-Whan
    • 한국세라믹학회지
    • /
    • 제51권2호
    • /
    • pp.127-131
    • /
    • 2014
  • Precipitated calcium carbonate(PCC) inorganic fillers for plastic offera higher replacement ratio with improved mechanical properties than any other inorganic fillers. Due to its secure economic feasibility, its fields of application areexpanding. For optimized PCC grain size and polymer replacement ratio, it is good to maintain at least $0.035{\mu}m$ grains and keep double the grain size of distance between particles, depending on the molecular weight and volume replacement rate of the polymer. PCC has unique characteristics, ie, with smaller grain size, dispersibility decreases, and if grain size is not homogenous, polymer cracking occurs. The maximum replacement ratio of PCC is approximately 30%, but in the range of 10 - 15% it produces the highest mechanical strength. When mixed with a biodegradable plastic like starch, it also improves initial environmental degradability.

폐 굴껍질 이용 침강성 탄산칼슘 제조에서 교반속도와 첨가제가 Vaterite 함유량에 미치는 영향 (Effect of Agitation and Additive on the Vaterite Contents of Precipitated Calcium Carbonate from Oyster Shell Waste)

  • 박영철
    • 청정기술
    • /
    • 제29권2호
    • /
    • pp.95-101
    • /
    • 2023
  • 폐굴껍질을 원료로 vaterite 형 침강성 탄산칼슘 제조 실험을 하였다. 굴껍질을 800℃의 온도에서 산화칼슘이 주성분인 소성 굴껍질을 제조하였다. 이 굴껍질을 질산이나 염산 용액에 녹여 0.1 M 질산칼슘이나 염화칼슘 수용액을 만들고, 여러 실험 조건에서 0.1 M 탄산나트륨 수용액과 탄산화 반응을 시켰다. 실험 조건은 aspatic acid 첨가량, 반응온도, 교반속도, NH4OH 첨가량, 반응시간, 용해 산 종류 등이다. XRD, SEM, Size 분석을 하고 vaterite 함유량을 계산하였다. 25℃, 600 rpm, aspatic acid 0.1몰/ 1몰 CaO과 2 cm3의 NH4OH를 첨가한 최적 조건에서 1시간 반응에서 vaterite 함유량 95.9%의 구형의 침강성 탄산칼슘을 합성하였다. 평균 입경은 12.11 ㎛이었다. 고 vaterite 함유 탄산칼슘은 의료용, 식용, 잉크첨가제 등 고부가가치 탄산칼슘으로 활용된다.

Effect of chemical concentrations on strength and crystal size of biocemented sand

  • Choi, Sun-Gyu;Chu, Jian;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.465-473
    • /
    • 2019
  • Biocementation due to the microbially induced calcium carbonate precipitation (MICP) process is a potential technique that can be used for soil improvement. However, the effect of biocementation may be affected by many factors, including nutrient concentration, bacterial strains, injection strategy, temperature, pH, and soil type. This study investigates mainly the effect of chemical concentration on the formation of calcium carbonate (e.g., quantity, size, and crystalline structure) and unconfined compressive strength (UCS) using different treatment time and chemical concentration in the biotreatment. Two chemical concentrations (0.5 and 1.0 M) and three different treatment times (2, 4, and 8 cycles) were studied. The effect of chemical concentrations on the treatment was also examined by making the total amount of chemicals injected to be the same, but using different times of treatment and chemical concentrations (8 cycles for 0.50 M and 4 cycles for 1.00 M). The UCS and CCC were measured and scanning electron microscopy (SEM) analysis was carried out. The SEM images revealed that the sizes of calcium carbonate crystals increased with an increase in chemical concentrations. The UCS values resulting from the treatments using low concentration were slightly greater than those from the treatments using high concentration, given the CCC to be more or less the same. This trend can be attributed to the size of the precipitated crystals, in which the cementation efficiency increases as the crystal size decreases, for a given CCC. Furthermore, in the high concentration treatment, two mineral types of calcium carbonate were precipitated, namely, calcite and amorphous calcium carbonate (ACC). As the crystal shape and morphology of ACC differ from those of calcite, the bonding provided by ACC can be weaker than that provided by calcite. As a result, the conditions of calcium carbonate were affected by test key factors and eventually, contributed to the UCS values.

침강탄산칼슘제조건과 그 입자도에 관한 연구 (Studies on the relationship of the preparation and the particle size of the precipitated calcium carbonate)

  • 나운룡
    • 약학회지
    • /
    • 제12권3_4호
    • /
    • pp.41-49
    • /
    • 1968
  • The optimum reaction conditions for the preparation of the precipitated calcium carbonate of an average particle size of 0.05.mu. in diameter was set in which the Box-Wilson Plan was applied. The reaction conditions are as follows; 1) concentration of milk of lime; 6.56% w/w 2) temperature; 14.24.deg. C #) velocity of carbon dioxide introducing; 1.95l/min. The crystal form was found that of calcite in X-ray diffraction analysis. The particle size was determined by the sedimentation volume measurement. The shape was identified by the elctron micro-diffraction pattern and the electron microscopic photographs.

  • PDF

펄프 섬유의 세포벽 미세공극 충전 (Cell Wall Micropore Loading of Pulp Fibers)

  • 이종만;조병묵
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권4호
    • /
    • pp.57-64
    • /
    • 1992
  • The unique cell wall micropores of pulp fiber can be utilized as loading site in variety of important practical application which could be the basis of new papermaking technologies. One of these includes the manufature of paper containing higher levels of in situ filler precipitated. Hardwood pulp fiber were first impregnated with the solution of sodium carbonate($Na_2CO_3$). The micropores in cell wall of pulp fibers were filled with the liquid salt solution. The second calcium nitrate($Ca(NO_3)_2$) solution formed an insoluble calcium carbonate($CaCO_3$) precipitate within the cell wall micropores by interacting with the first sodium carbonate solution. The effects of chemical concentration and dryness of pulp fibers on the retention of cell wall micropore loaded filler were investigated. The paper properties of cell wall micropore loaded pulp fibers were compared with those of conventionally loaded and lumen loaded pulp fibers. Also the presense of the fillers within the cell wall micropore was observed by SEM. Increasing the chemical concentration to generate the calcium carbonate increased the retention of filler in cell wall micropore loaded pulp fibers. The particle size distribution of precipitated calcium carbonate ranged from $0.1{\mu}m$ to $80{\mu}m$. But, the average particle size of cell wall micropore loaded calcium carbonate was $4{\mu}m$. The paper made from never dried pulp fibers, the cell wall micropores which were filled with calcium carbonate, had better mechanical and optical properties than those of conventionally loaded or lumen loaded pulp fibers.

  • PDF