• Title/Summary/Keyword: Precast concrete perimeter frame

Search Result 2, Processing Time 0.019 seconds

Seismic Isolation Systems Incorporating with RC Core Walls and Precast Concrete Perimeter Frames -Shimizu Corporation Tokyo Headquarter-

  • Shimazaki, Dai;Nakagawa, Kentaro
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.181-189
    • /
    • 2015
  • Shimizu Corporation Tokyo Headquarters, one of the city's leading office buildings, features many pioneering technologies that contribute to a sustainable society through environmental stewardship and a sophisticated disaster management facility. In terms of structural engineering, a seismic isolation system incorporating reinforced concrete core walls and precast concrete perimeter frames create a robust structure in the event of a large earthquake. In addition to the seismic resistance of the structure, several pioneering construction methods and materials are adopted. This office building can serve as a basis for new design and construction approaches and methodologies to ensure safe and economical structures.

Experimental study on RC frame structures strengthened by externally-anchored PC wall panels

  • Choi, Seung-Ho;Hwang, Jin-Ha;Lee, Deuck Hang;Kim, Kang Su;Zhang, Dichuan;Kim, Jong Ryeol
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.383-393
    • /
    • 2018
  • Infill wall strengthening method has been widely used for seismic strengthening of deteriorated reinforced concrete (RC) frame structures with non-seismic details. Although such infill wall method can ensure sufficient lateral strengths of RC frame structures deteriorated in seismic performances with a low constructional cost, it generally requires quite cumbersome construction works due to its complex connection details between an infill wall and existing RC frame. In this study, an advanced seismic strengthening method using externally-anchored precast wall panels (EPCW) was developed to overcome the disadvantage inherent in the existing infill wall strengthening method. A total of four RC frame specimens were carefully designed and fabricated. Cyclic loading tests were then conducted to examine seismic performances of RC frame specimens strengthened using the EPCW method. Two specimens were fully strengthened using stocky precast wall panels with different connection details while one specimen was strengthened only in column perimeter with slender precast wall panels. Test results showed that the strength, stiffness, and energy dissipation capacity of RC frame specimens strengthened by EPCWs were improved compared to control frame specimens without strengthening.