• Title/Summary/Keyword: Precast Concrete slab

Search Result 160, Processing Time 0.023 seconds

Behavior of Segments in Precast Prestressed Concrete Hollow Slab Bridges (프리캐스트 프리스트레스트 콘크리트 중공슬래브 교량의 분절거동)

  • Lee Ho Jun;Byun Kun Joo;Song Ha-Won;Kim Ho Jin;Kim Yun Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Precast prestressed concrete hollow slab bridge is one of segmented bridge which can be long span, so that the structural behavior of joints of adjacent segment should be evaluated by the analysis as well as experiment. In this study, small scaled beam tests were carried out to determine joint shear key shape and restraint stress by prestressing. From the tests and the analysis, it was found that the joint key shape and the restraint stress affect the behavior of segments and the segments which has the height to the width of shear key as 1/3 possess maximum shear resistance.

  • PDF

Behavior of Precast Prestressed Concrete Pavements under Post-Tensioning (프리캐스트 프리스트레스트 콘크리트 포장의 긴장에 의한 거동 해석)

  • Kim, Seong-Min;Cho, Byoung-Hooi
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.135-143
    • /
    • 2007
  • The pavement system constructed by tieing a number of precast concrete slabs employing prestressing techniques is called the precast prestressed concrete pavement. The behavior of this type of pavement system under post-tensioning was analyzed using a finite element model. First, the optimal number of anchors was determined by investigating the distribution of compressive stresses in the pavement system due to post-tensioning. Then, the effects of the parameters such as the horizontal resistance of underlying layers, the pavement length, the slab thickness, and the bearing area of the anchorage on the distribution of compressive stresses were analyzed. The horizontal resistance of underlying layers induced the loss of compressive stresses, and the loss increased in the middle of the pavement. As the pavement length increased or the slab thickness decreased, the stress loss due to the horizontal resistance of underlying layers became larger. However, the bearing area of the anchorage where the compressive forces were applied did not much affect the distribution of compressive stresses.

  • PDF

Trial Installation and Performance Evaluation of Prefabricated Concrete Slab Track on Revenue Line (프리캐스트 콘크리트 슬래브궤도의 영업선 시험시공 및 성능평가)

  • Jang, Seung-Yup;Kang, Yun-Suk;Lee, Hu-Sam;Kim, Yu-Bong;Lee, Jong-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.840-845
    • /
    • 2008
  • To develop our original technology of concrete slab track, being widely accepted for new track, prefabricated concrete slab track, or precast concrete slab track has been developed. They have two different types according to slab shape and its dimensions, connection of slabs and connecting structure onto substructure. After the system design and successful performance evaluation in the laboratory, the trial installation on revenue line has been carried out. This paper is presenting the result of the trial installation and the performance tests in field. The performance tests have been performed as visual inspection for cracks and damages, measurement of track alignment and elastic behavior of track under passing trains. The performance test results during last 2 years have shown that no remarkable damages and settlements were found, and track alignment and elastic track behavior both exhibits good status.

  • PDF

Experimental Study on Strengthening Transverse Joints between Precast Concrete Slabs

  • Park, Jong-Jin;Cheung, Jin-Hwan;Shin, Su-Bong
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.45-54
    • /
    • 2000
  • Precast R.C. slabs are being used widely for the construction of bridge structures due to their simplicity in construction processes. However, one of the disadvantages in precast R.C. slabs is the existence of transverse joints between two precast slabs. The transverse joints are structurally fragile and the task of strengthening the joints is difficult one due to their structural discontinuity. The aim of this study was to improve the behavior of transverse joints between precast R.C. slabs by introducing prestress with external cables. Three steel-concrete composite bridge specimens, which were prestressed with the external cables anchored on steel girders, were fabricated in the laboratory. Both pretension and post-tension methods were applied to introduce prestressing on the concrete slab with a straight tendon arrangement. Static tests were conducted at service load and ultimate load test was performed to evaluate punching shear capacity of the transverse joint. In this paper, two prestressing methods were tested and their effects were evaluated with respect to the elastic behavior and ultimate loading capacity of the transverse joints.

  • PDF

shear Tests on female-to-female Type Joint between Precast Concrete Bridge Decks (프리캐스트 콘크리트 교량바닥판 female-female이음부의 전단실험)

  • 김영진;김영진;김종희
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.161-168
    • /
    • 1998
  • Increase of traffic volume in recent years results in deterioration of the bridge slab, which is directly subjected ot vehicle loads. Where extensive repair is necessary, replacement or enhancement of load carrying capacity using full depth precast concrete deck is often the most practical solution. Precast deck system has transverse joints between adjacent precast decks. Vertical shear forces occur when a vehicle wheel load is carried by precast decks and the joints are used to transfer the load to an adjacent deck. Effective load transfer between precast decks is critical for integral behavior. Finite element analysis and tests were run on the proposed femal-to-female type joint. 18 joint specimens were tested to investigate the effects of angle. D/H, and confining stress under static load. Results indicate joint with angle of 60$^{\circ}$ and D/H of 1/4 shows the improved load carrying capacity on crack. It is effective in protecting the cracking of joints to keep the joint in compression using confining stress.

Influence of Cracks in Precast Concrete Deck on the Flexural Strength of Composite Half PC Slab (하프PC 슬래브에 발생한 균열이 합성 슬래브의 휨 내력에 미치는 영향에 관한 실험적 연구)

  • Seo, Tae-Seok;Lee, Moon-Sung;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.199-205
    • /
    • 2009
  • Recently, as the concern for the development of a construction method for an environmental protection and for tall building is increasing, the use of the half precast concrete(PC) slab that has the solution of environmental problems and the advantage such as reduction of construction period is being demanded. However, there is shortcoming that the crack can occur easily while constructing, and these cracks can have a bad influence upon the structural performance of PC composite slab. However, there is little studies on the influence of these cracks on the structural performance of composite PC slab. In this study, the specimen caused the crack before pouring topping concrete in the half PC slab and the PC composite slab without the cracks were produced to investigate the structural performance of PC composite slab with crack.

The Experimental Study on Transverse Field Joint Method of Precast Road Deck Slab of Double Deck Tunnel in Great Depth (대심도 복층터널 프리캐스트 중간슬래브의 횡방향 현장이음방식에 대한 실험연구)

  • Lee, Doo-Sung;Kim, Bo-Yeon;Bae, Chul-Gi;Hur, Jae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2017
  • The joints between precast PSC slabs of the intermediate road slab in double deck tunnel are inevitably generated in the road traffic vehicle traveling direction. Therefore, it is important to make the behavior of parts on the joint in one piece. The imtermediate road slab system of double deck tunnel in great depth proposed in this study will be constructed with precast PSC slab in order to minimize the construction period. And the joint connection between the precast slab has been developed in two methods: the 'Transverse tendon reinforcement method' and 'High strength bolts connection method'. Also, the experiments were performed for the full scale model in order to evaluate the performance of the intermediate road deck slab with two type joints systems, the structural stability was verified through the F.E.M analsysis. The results of static loading test and F.E.M analysis investigated a very stable behavior of intermediate road deck slab in double deck tunnel applying the joint methods developed in this study, in the cracks and deflections to satisfy the design standards of Highway Roads Bridges (2011), it was determined that there is no problem even servicebility.

Deformation and Stress Distribution of Discontinuous Precast Concrete Track Slab : I. Initial and Temperature Deformation (불연속 프리캐스트 콘크리트궤도 슬래브의 변형과 응력 분포 : I. 초기 및 온도 변형)

  • Lee, Dong Hoon;Kim, Ki Hyun;Jang, Seung Yup;Zi, Goangseup
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.625-636
    • /
    • 2017
  • This study looked into the behavior of precast concrete track due to temperature variation and initial track deformation and examined the effect of initial deformation and deformation caused by temperature gradient on the stress distribution of slab under train load. In this paper, one of two papers in a series, a finite element analysis model for calculating deformation and stress of precast concrete track was proposed; the temperature distribution and displacements measured at the precast concrete track in the field were compared with the analytical results. The results show that the slab always curled up due to initial deformation; by comparing the measured displacements with the displacements calculated by taking measured temperatures at each depth as input, the effective built-in temperature (EBITD), the temperature difference between the top and bottom of the slab corresponding to the initial deformation, can be estimated. If EBITD is relevantly assumed, the calculated displacements correlate well with the measured ones.

Development of Connector for Solid Precast Concrete Slabs with Diaphragm Action (격막 작용을 갖는 솔리드 프리캐스트 콘크리트 슬래브의 연결장치 개발)

  • Lee, Sangsup;Oh, Keunyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.413-424
    • /
    • 2024
  • To expedite construction of small precast concrete buildings using dry joints, this study developed and evaluated a connector system for solid slabs. The research included a comprehensive literature review on seismic design requirements for precast concrete floors, followed by an analytical evaluation of the connector's bearing capacity in 3-story buildings. Experimental assessments were conducted to determine the in-plane and out-of-plane capacities of the newly designed semi-circular connector. Finally, the constructability of both the semi-circular and flat connector configurations was compared through tests on single-story precast concrete frames.