• Title/Summary/Keyword: Pre-visualization

Search Result 180, Processing Time 0.043 seconds

The Effects of Flash Panorama-based Virtual Field Trips on Students' Spatial Visualization Ability and Their Understanding of Volcanic Concept in High School Earth Science Class (고등학교 지구과학 수업에서 플래시 파노라마 기반 가상 야외 답사의 활용이 학생들의 공간 시각화 능력 및 화산 개념 이해에 미치는 영향)

  • Heo, Jun-Hyuk;Lee, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.345-355
    • /
    • 2013
  • While virtual field trips (VFT) are considered as an attractive alternative to traditional field experience, it is unclear how VFT are best used in Earth Science curriculum. In this study, we investigated the effects of flash panorama-based VFT on students' spatial visualization ability and their understanding of volcanic concept in high school Earth Science class. To investigate the effects of instructional treatment, we conducted pre and post-test on participants' spatial visualization ability and their understanding of volcanic concept, and analyzed using analysis of covariance (ANCOVA) and linear regression. Findings are as follows: First, the change in students' spatial visualization ability in experimental group was significantly higher than that of control group, especially in spatial manipulation category. Second, the change in students' understanding of volcanic concept in experimental group was higher than that of control group in most of the categories, but it is statistically not significant. Last, the change in correlation between spatial visualization ability and understanding of volcanic concept in experimental group was remarkably high compared to control group.

The Effects of Flash Panorama-based Virtual Field Trips on Middle School Students' Spatial Visualization Ability, Conceptual Understanding, and Perceptions (플래시 파노라마 기반 가상야외답사의 활용이 중학생의 공간 시각화 능력, 개념 이해와 인식에 미치는 영향)

  • Lee, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.162-172
    • /
    • 2013
  • The purpose of this study is to investigate the effects of flash panorama-based virtual field trips (VFT) as a supporting tool for geological field activity on middle school students' spatial visualization ability, conceptual understanding, and perceptions. A total of 17 middle school students participated in a three day long actual geological field trip around Jeju Island where a three-phase instructional model is applied for utilization of flash panorama-based VFT, which was proposed by Kim and Lee (2011). With one-group pretest-posttest pre-experimental design, data were collected using questionnaire and were analyzed to find out a change in students' spatial visualization ability and volcanic concept understanding, and their perceptions about the utilization of flash panorama-based VFT. Findings are as follows: First, the effect of utilizing flash panorama-based VFT in actual field trip revealed that there was meaningful increase in 'spatial relation' category of spatial visualization ability and 'knowledge' and 'comprehension' domains of volcanic concept understanding. Second, majority of students showed positive gain index in both spatial visualization ability and volcanic concept understanding. Lastly, participating students showed much interest and high satisfaction, and positive perception on the use of VFT. They also perceived that the utilization of flash panorama-based VFT could help in carrying out an actual field trip in terms of cognitive and geographical factors.

A Study on the Use of Stopword Corpus for Cleansing Unstructured Text Data (비정형 텍스트 데이터 정제를 위한 불용어 코퍼스의 활용에 관한 연구)

  • Lee, Won-Jo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.891-897
    • /
    • 2022
  • In big data analysis, raw text data mostly exists in various unstructured data forms, so it becomes a structured data form that can be analyzed only after undergoing heuristic pre-processing and computer post-processing cleansing. Therefore, in this study, unnecessary elements are purified through pre-processing of the collected raw data in order to apply the wordcloud of R program, which is one of the text data analysis techniques, and stopwords are removed in the post-processing process. Then, a case study of wordcloud analysis was conducted, which calculates the frequency of occurrence of words and expresses words with high frequency as key issues. In this study, to improve the problems of the "nested stopword source code" method, which is the existing stopword processing method, using the word cloud technique of R, we propose the use of "general stopword corpus" and "user-defined stopword corpus" and conduct case analysis. The advantages and disadvantages of the proposed "unstructured data cleansing process model" are comparatively verified and presented, and the practical application of word cloud visualization analysis using the "proposed external corpus cleansing technique" is presented.

IVAG: An Integrative Visualization Application for Various Types of Genomic Data Based on R-Shiny and the Docker Platform

  • Lee, Tae-Rim;Ahn, Jin Mo;Kim, Gyuhee;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.178-182
    • /
    • 2017
  • Next-generation sequencing (NGS) technology has become a trend in the genomics research area. There are many software programs and automated pipelines to analyze NGS data, which can ease the pain for traditional scientists who are not familiar with computer programming. However, downstream analyses, such as finding differentially expressed genes or visualizing linkage disequilibrium maps and genome-wide association study (GWAS) data, still remain a challenge. Here, we introduce a dockerized web application written in R using the Shiny platform to visualize pre-analyzed RNA sequencing and GWAS data. In addition, we have integrated a genome browser based on the JBrowse platform and an automated intermediate parsing process required for custom track construction, so that users can easily build and navigate their personal genome tracks with in-house datasets. This application will help scientists perform series of downstream analyses and obtain a more integrative understanding about various types of genomic data by interactively visualizing them with customizable options.

Numerical Investigation of the Moving Wall Effects in Turbulent Channel Flows (난류채널유동에서 움직이는 벽면에 대한 수치연구)

  • Hwang, Jun Hyuk;Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.27-33
    • /
    • 2017
  • Direct numerical simulations of turbulent channel flows with moving wall conditions on the top wall are performed to examine the effects of the moving wall on the turbulent characteristics. The moving wall velocity only applied to the top wall with the opposite direction to the main flow is systematically varied to reveal the sustained-mechanism for turbulence. The turbulence statistics for the Couette-Poiseuille flow, such as mean velocity, root mean square of the velocity fluctuations, Reynolds shear stress and pre-multiplied energy spectra of the velocity fluctuations, are compared with those of canonical turbulent channel flows. The comparison suggests that although the turbulent activity on the top wall increases with increasing the Reynolds number, that on the bottom wall decreases, contrary to the previous finding for the canonical turbulent channel flows. The increase of the turbulent energy on the top wall is attributed to not only the increase of the Reynolds number but also elongation of the logarithmic layer due to increase of the wall layer on the top wall. However, because the logarithmic layer is shortened on the bottom wall due to the decrease of the wall layer, the turbulence energy on the bottom wall decreases despite of the increase of the Reynolds number.

Deterministic manipulation and visualization of near field with ultra-smooth, super-spherical gold nanoparticles by atomic force microscopy

  • KIM, MINWOO;LEE, JOOHYUN;YI, GI-RA;LEE, SEUNGWOO;SONG, YOUNG JAE
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.1-111.1
    • /
    • 2015
  • As an alternative way to get sophisticated nanostructures, atomic force microscopy (AFM) has been used to directly manipulate building primitives. In particular, assembly of metallic nanoparticles(NPs) can provide various structures for making various metamolecules. As far, conventionally made polygonal shaped metallic NPs showed non-uniform distribution in size and shape which limit its study of fundamental properties and practical applications. In here, we optimized conditions for deterministic manipulation of ultra-smooth and super-spherical gold nanoparticles (AuNPs) by AFM. [1] Lowered adhesion force by using platinum-iridium coated AFM tips enabled us to push super-spherical AuNPs in linear motion to pre-programmed position. As a result, uniform and reliable electric/magnetic behaviors of assembled metamolecules were achieved which showed a good agreement with simulation data. Furthermore, visualization of near field for super-spherical AuNPs was also addressed using photosensitive azo-dye polymers. Since the photosensitive azo-dye polymers can directly record the intensity of electric field, optical near field can be mapped without complicated instrumental setup. [2] By controlling embedding depth of AuNPs, we studied electric field of AuNPs in different configuration.

  • PDF

The impact of Google SketchUp on spatial ability and 3D geometric thinking of 7th grade students in volume measurement of solid figures (공간 능력과 공간 기하적 사고에서 SketchUp활용의 효과 -중학교 1학년 입체도형의 측정 단원을 중심으로-)

  • Lee, Hyun Hui;Kim, Rae Young
    • The Mathematical Education
    • /
    • v.52 no.4
    • /
    • pp.531-547
    • /
    • 2013
  • The purpose of the study is to examine how effects of activities using Google SketchUp on students' spatial ability and 3D geometric thinking in measuring the volume of solid figures. By comparing the results from pre- and post-tests between the experimental group and control group, we found that activities using Google SketchUp help students improve their spatial ability in the spatial orientation and visualization. In addition, more than half students in the experimental group moved from level 4 up to level 7 in thinking process of measuring the volume in terms of Battista(2004)'s levels. This study suggests that the instruction with Google SketchUp can help to improve students' spatial ability and 3D geometric thinking in the regular class in middle school. In addition, SketchUp can be an advanced technological tool to support students' self-directed learning, which create an efficient educational environment and a great opportunity to learn geometry in an effective manner.

Capillary-driven Rigiflex Lithography for Fabricating High Aspect-Ratio Polymer Nanostructures (모세관 리소그라피를 이용한 고종횡비 나노구조 형성법)

  • Jeong, Hoon-Eui;Lee, Sung-Hoon;Kim, Pil-Nam;Suh, Kahp-Y.
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.3-8
    • /
    • 2007
  • We present simple methods for fabricating high aspect-ratio polymer nanostructures on a solid substrate by rigiflex lithography with tailored capillarity and adhesive force. In the first method, a thin, thermoplastic polymer film was prepared by spin coating on a substrate and the temperature was raised above the polymer's glass transition temperature ($T_g$) while in conformal contact with a poly(urethane acrylate) (PUA) mold having nano-cavities. Consequently, capillarity forces the polymer film to rise into the void space of the mold, resulting in nanostructures with an aspect ratio of ${\sim}4$. In the second method, very high aspect-ratio (>20) nanohairs were fabricated by elongating the pre-formed nanostructures upon removal of the mold with the aid of tailored capillarity and adhesive force at the mold/polymer interface. Finally, these two methods were further used to fabricate micro/nano hierarchical structures by sequential application of the molding process for mimicking nature's functional surfaces such as a lotus leaf and gecko foot hairs.

Registration of 3D CT Data to 2D Endoscopic Image using a Gradient Mutual Information based Viewpoint Matching for Image-Guided Medialization Laryngoplasty

  • Yim, Yeny;Wakid, Mike;Kirmizibayrak, Can;Bielamowicz, Steven;Hahn, James
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.4
    • /
    • pp.368-387
    • /
    • 2010
  • We propose a novel method for the registration of 3D CT scans to 2D endoscopic images during the image-guided medialization laryngoplasty. This study aims to allow the surgeon to find the precise configuration of the implant and place it into the desired location by employing accurate registration methods of the 3D CT data to intra-operative patient and interactive visualization tools for the registered images. In this study, the proposed registration methods enable the surgeon to compare the outcome of the procedure to the pre-planned shape by matching the vocal folds in the CT rendered images to the endoscopic images. The 3D image fusion provides an interactive and intuitive guidance for surgeon by visualizing a combined and correlated relationship of the multiple imaging modalities. The 3D Magic Lens helps to effectively visualize laryngeal anatomical structures by applying different transparencies and transfer functions to the region of interest. The preliminary results of the study demonstrated that the proposed method can be readily extended for image-guided surgery of real patients.

Study on Loss Reduction for Tilting Disk Check Valve Installed in Piping System (배관용 틸팅디스크 체크밸브의 손실저항 절감에 관한 연구)

  • Kim, J.H.;Park, J.H.;Lee, H.S.;Nam, S.H.;Hwang, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.327-328
    • /
    • 2006
  • In generally, under the influence of over-pressure drop, serious problems such as cavitation, choked flow, flashing and vibration has been coming around the tilting disk check valve. A PIV experiment to examine the cause of energy loss has been performed and the improvement configuration of valve seat based on this visualization results is proposed. In the visualization results, flows in the piping system became instability under the influence of the shape of boss. This unstable flows induces sudden pressure drop in the piping system. So, we change the configuration of boss as a streamlined design to be stabilized the flows. A pressure measurement has been performed to know that the influence of the configuration change. In result, the rate of pressure loss reduction is about 22% at the position of No. 2 and 24.2% at the position of No. 6 in comparison with pre-improved shape.

  • PDF