Annual Conference on Human and Language Technology
/
2020.10a
/
pp.237-240
/
2020
사전학습 언어모델은 다양한 자연어처리 작업에서 높은 성능을 보였다. 하지만, 사전학습 언어모델은 문장 내 문맥 정보만을 학습하기 때문에 단어간 의미관계 정보를 추론하는데는 한계가 있다. 최근에는, 사전학습 언어모델이 어느수준으로 단어간 의미관계를 이해하고 있는지 다양한 Probing Test를 진행하고 있다. 이러한 Test는 언어모델의 강점과 약점을 분석하는데 효율적이며, 한층 더 인간의 언어를 정확하게 이해하기 위한 모델을 구축하는데 새로운 방향을 제시한다. 본 논문에서는 대표적인 사전 학습기반 언어모델인 BERT(Bidirectional Encoder Representations from Transformers)의 단어간 의미관계 이해도를 평가하는 3가지 작업을 진행한다. 첫 번째로 단어 간의 상위어, 하위어 관계를 나타내는 IsA 관계를 분석한다. 두번째는 '자동차'와 '변속'과 같은 관계를 나타내는 PartOf 관계를 분석한다. 마지막으로 '새'와 '날개'와 같은 관계를 나타내는 HasA 관계를 분석한다. 결과적으로, BERTbase 모델에 대해서는 추론 결과 대부분에서 낮은 성능을 보이지만, BERTlarge 모델에서는 BERTbase보다 높은 성능을 보였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.87-90
/
2020
표 질의응답은 반-정형화된 표 데이터에서 질문에 대한 답을 찾는 문제이다. 본 연구에서는 한국어 표 질의응답을 위한 표 데이터에 적합한 TAPAS를 이용한 언어모델 사전학습 방법과 표에서 정답이 있는 셀을 예측하고 선택된 셀에서 정확한 정답의 경계를 예측하기 위한 표 질의응답 모형을 제안한다. 표 사전학습을 위해서 약 10만 개의 표 데이터를 활용했으며, 텍스트 데이터에 사전학습된 BERT 모델을 이용하여 TAPAS를 사전학습한 모델이 가장 좋은 성능을 보였다. 기계독해 모델을 적용했을 때 EM 46.8%, F1 63.8%로 텍스트 텍스트에 사전학습된 모델로 파인튜닝한 것과 비교하여 EM 6.7%, F1 12.9% 향상된 것을 보였다. 표 질의응답 모델의 경우 TAPAS를 통해 생성된 임베딩을 이용하여 행과 열의 임베딩을 추출하고 TAPAS 임베딩, 행과 열의 임베딩을 결합하여 기계독해 모델을 적용했을 때 EM 63.6%, F1 76.0%의 성능을 보였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.346-349
/
2021
표 기계독해에서는 도메인에 따라 언어모형에 필요한 지식이나 표의 구조적인 형태가 변화하면서 텍스트 데이터에 비해서 더 큰 성능 하락을 보인다. 본 논문에서는 표 기계독해에서 이러한 도메인의 변화에 강건한 사전학습 표 언어모형 구축을 위한 의미있는 표 데이터 선별을 통한 사전학습 데이터 구축 방법과 적대적인 학습 방법을 제안한다. 추출한 표 데이터에서 구조적인 정보가 없이 웹 문서의 장식을 위해 사용되는 표 데이터 검출을 위해 Heuristic을 통한 규칙을 정의하여 HEAD 데이터를 식별하고 표 데이터를 선별하는 방법을 적용했으며, 구조적인 정보를 가지는 일반적인 표 데이터와 엔티티에 대한 지식 정보를 가지는 인포박스 데이터간의 적대적 학습 방법을 적용했다. 기존의 정제되지 않는 데이터로 학습했을 때와 비교하여 데이터를 정제하였을 때, KorQuAD 표 데이터에서 f1 3.45, EM 4.14가 증가하였으며, Spec 표 질의응답 데이터에서 정제하지 않았을 때와 비교하여 f1 19.38, EM 4.22가 증가한 성능을 보였다.
Jeong, Soyeong;Yang, Wonsuk;Park, ChaeHun;Park, Jong C.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.243-248
/
2020
인공 신경망을 통한 심층 학습 모델의 발전은 컴퓨터 비전, 자연언어 이해 문제들에서 인간을 뛰어넘는 성능을 보이고 있다. 특히 트랜스포머[1] 기반의 사전 학습 모델은 질의응답, 대화문과 같은 자연언어 이해 문제에서 최근 높은 성능을 보이고 있다. 하지만 트랜스포머 기반의 모델과 같은 심층 학습 모델의 급격한 발전 양상에 비해, 이의 동작 방식은 상대적으로 잘 알려져 있지 않다. 인공 신경망을 통한 심층 학습 모델을 해석하는 방법으로 모델의 예측 값과 실제 값이 얼마나 일치하는지를 측정하는 모델의 보정(Calibration)이 있다. 본 연구는 한국어 기반의 심층학습 모델의 해석을 위해 모델의 보정을 수행하였다. 그리고 사전 학습된 한국어 언어 모델이 문장이 내포하는 애매성을 잘 파악하는지의 여부를 확인하고, 완화 기법들을 적용하여 문장의 애매성을 확신 수준을 통해 정량적으로 출력할 수 있도록 하였다. 또한 한국어의 문법적 특징으로 인한 문장의 의미 변화를 모델 보정 관점에서 평가하여 한국어의 문법적 특징을 심층학습 언어 모델이 잘 이해하고 있는지를 정량적으로 확인하였다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.704-706
/
2023
이 논문에서는 과학기술분야 특화 한국어 사전학습 언어모델인 KorSciDeBERTa를 소개한다. DeBERTa Base 모델을 기반으로 약 146GB의 한국어 논문, 특허 및 보고서 등을 학습하였으며 모델의 총 파라미터의 수는 180M이다. 논문의 연구분야 분류 태스크로 성능을 평가하여 사전학습모델의 유용성을 평가하였다. 구축된 사전학습 언어모델은 한국어 과학기술 분야의 여러 자연어처리 태스크의 성능향상에 활용될 것으로 기대된다.
Taewook Kim;Dong Sung Kim;Donghyun Kim;Jong Woo Kim
Asia pacific journal of information systems
/
v.29
no.4
/
pp.838-855
/
2019
Online product reviews are a vital source for companies in that they contain consumers' opinions of products. The earlier methods of opinion mining, which involve drawing semantic information from text, have been mostly applied in one dimension. This is not sufficient in itself to elicit reviewers' comprehensive views on products. In this paper, we propose a novel approach in opinion mining by projecting online consumers' reviews in a multidimensional framework to improve review interpretation of products. First of all, we set up a new framework consisting of six dimensions based on a marketing management theory. To calculate the distances of review sentences and each dimension, we embed words in reviews utilizing Google's pre-trained word2vector model. We classified each sentence of the reviews into the respective dimensions of our new framework. After the classification, we measured the sentiment degrees for each sentence. The results were plotted using a radar graph in which the axes are the dimensions of the framework. We tested the strategy on Amazon product reviews of the iPhone and Galaxy smartphone series with a total of around 21,000 sentences. The results showed that the radar graphs visually reflected several issues associated with the products. The proposed method is not for specific product categories. It can be generally applied for opinion mining on reviews of any product category.
Edward Dwijayanto Cahyadi;Hans Nathaniel Hadi Soesilo;Mi-Hwa Song
The Journal of the Convergence on Culture Technology
/
v.10
no.1
/
pp.617-623
/
2024
Identifying emotions through speech poses a significant challenge due to the complex relationship between language and emotions. Our paper aims to take on this challenge by employing feature engineering to identify emotions in speech through a multimodal classification task involving both speech and text data. We evaluated two classifiers-Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM)-both integrated with a BERT-based pre-trained model. Our assessment covers various performance metrics (accuracy, F-score, precision, and recall) across different experimental setups). The findings highlight the impressive proficiency of two models in accurately discerning emotions from both text and speech data.
Kim, Jin-Sung;Kim, Gyeong-min;Son, Jun-young;Park, Jeongbae;Lim, Heui-seok
Journal of the Korea Convergence Society
/
v.12
no.12
/
pp.39-47
/
2021
The construction of high-quality input features through effective segmentation is essential for increasing the sentence comprehension of a language model. Improving the quality of them directly affects the performance of the downstream task. This paper comparatively studies the segmentation that effectively reflects the linguistic characteristics of Korean regarding word and sentence classification. The segmentation types are defined in four categories: eojeol, morpheme, syllable and subchar, and pre-training is carried out using the RoBERTa model structure. By dividing tasks into a sentence group and a word group, we analyze the tendency within a group and the difference between the groups. By the model with subchar-level segmentation showing higher performance than other strategies by maximal NSMC: +0.62%, KorNLI: +2.38%, KorSTS: +2.41% in sentence classification, and the model with syllable-level showing higher performance at maximum NER: +0.7%, SRL: +0.61% in word classification, the experimental results confirm the effectiveness of those schemes.
KIPS Transactions on Software and Data Engineering
/
v.11
no.3
/
pp.125-132
/
2022
Sentence compression is a natural language processing task that generates concise sentences that preserves the important meaning of the original sentence. For grammatically appropriate sentence compression, early studies utilized human-defined linguistic rules. Furthermore, while the sequence-to-sequence models perform well on various natural language processing tasks, such as machine translation, there have been studies that utilize it for sentence compression. However, for the linguistic rule-based studies, all rules have to be defined by human, and for the sequence-to-sequence model based studies require a large amount of parallel data for model training. In order to address these challenges, Deleter, a sentence compression model that leverages a pre-trained language model BERT, is proposed. Because the Deleter utilizes perplexity based score computed over BERT to compress sentences, any linguistic rules and parallel dataset is not required for sentence compression. However, because Deleter compresses sentences only considering perplexity, it does not compress sentences by reflecting the linguistic information of the words in the sentences. Furthermore, since the dataset used for pre-learning BERT are far from compressed sentences, there is a problem that this can lad to incorrect sentence compression. In order to address these problems, this paper proposes a method to quantify the importance of linguistic information and reflect it in perplexity-based sentence scoring. Furthermore, by fine-tuning BERT with a corpus of news articles that often contain proper nouns and often omit the unnecessary modifiers, we allow BERT to measure the perplexity appropriate for sentence compression. The evaluations on the English and Korean dataset confirm that the sentence compression performance of sentence-scoring based models can be improved by utilizing the proposed method.
In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.